Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Materials (Basel) ; 14(15)2021 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-34361541

RESUMEN

Bainitic ferrite plate thickness evolution during isothermal transformation was followed at the same holding temperatures in two nanostructured steels containing (in wt.%) 1C-2Si and 0.4C-3Si. A dynamic picture of how the bainitic transformation evolves was obtained from the characterization of the microstructure present at room temperature after full and partial transformation at 300 and 350 °C. The continuous change during transformation of relevant parameters influencing the final scale of the microstructure, YS of austenite, driving force of the transformation and evolution of the transformation rate has been tracked, and these variations have been correlated to the evolution of the bainitic ferrite plate. Instead of the expected refinement of the plate predicted by existing theory and models, this study revealed a thickening of the bainitic ferrite plate thickness as the transformation progresses, which is partially explained by changes in the transformation rate through the whole decomposition of austenite into bainitic ferrite.

2.
Materials (Basel) ; 13(19)2020 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-33036358

RESUMEN

This paper presents the results of martensite tempering resistance in 4% Mn steel. The material was quenched and tempered at 350 °C for 15, 30, and 60 min. The analysis of the quenching and tempering was carried out using dilatometric and microstructural approaches. The phase composition was assessed using X-ray diffraction. The Ms temperature and tempering progress were simulated using JMatPro software. The dilatometric analysis revealed a small decrease in the relative change in length (RCL) during tempering. This decrease was connected to the precipitation kinetics of cementite within the martensite laths. The microstructure investigation using a scanning electron microscope showed a very small amount of carbides, even for the longest tempering time. This showed the high tempering resistance of the martensite in medium-Mn steels. The hardness results showed an insignificant decrease in the hardness depending on the tempering time, which confirmed the high tempering resistance of martensite.

3.
Materials (Basel) ; 13(4)2020 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-32098018

RESUMEN

The work presents results of phase transformation kinetics of hot-rolled 5% Mn steel subjected to different heat treatments. Three different schedules were introduced: isothermal holding in a bainite region, coiling simulation and intercritical annealing. The evolution of microstructure components was investigated using dilatometric and metallographic analyses. According to obtained results, the medium-Mn steel exhibits high resistance for γ/α transformation during the bainite transformation and coiling simulation (upon cooling from the austenite region). During 5 h isothermal holding, no bainite and/or ferrite formation was detected. This results in the formation of martensite upon cooling to room temperature. Differently, when the steel was subjected to the intercritical annealing at 720 and 700 °C (upon heating from room temperature), a final microstructure consisted of ferrite, martensite and retained austenite. At 700 °C, no fresh martensite formation was detected upon cooling to room temperature. This means that the austenite was enriched in carbon during the intercritical annealing step enough to keep its thermal stability.

4.
Sci Rep ; 10(1): 487, 2020 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-31949280

RESUMEN

Nano-scale investigations of bainitic structures formed at temperatures below 350 °C have shown that the bainitic ferrite lattice is super-saturated in carbon. A high density of intrinsic defects would be playing a part in the carbon-supersaturation levels detected. In this work, the role of C-vacancy complexes on carbon-supersaturation in low temperature bainite is investigated by means of Positron Annihilation Spectroscopy. Results reveal the presence of a significant amount of monovacancies in the structures that plays an important role on the formation of carbon clusters in the ferrite lattice of nano-scale bainitic structures.

5.
Sci Technol Adv Mater ; 20(1): 673-687, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31275459

RESUMEN

First magnetic characterization of a recently developed generation of carbide free bainitic steels, known as Nanobain, has been performed. Stability of its retained austenite at cryogenic temperatures has been studied by means of X-ray diffraction, microscopy, dilatometry and magnetic measurements. Two morphologies for this phase (blocky-type and film-type) appear in a different proportion depending on the chemical composition and the applied thermal treatment. Inhibition of the martensitic transformation, when decreasing the temperature down to -271°C, has been observed in those microstructures with higher proportion of film-type austenite. The paramagnetic state of austenite at room temperature seems to lead to different magnetic behaviors (ferromagnetic, antiferromagnetic) at cryogenic temperatures (TC or TN being around -23°C in all the studied samples), depending on the proportion of such morphological features. Furthermore, irreversibility with temperature on the evolution of such magnetic behaviors has been observed for all the studied bainitic structures and is proposed to be due to a magnetic proximity effect.

6.
Sci Rep ; 5: 17164, 2015 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-26602631

RESUMEN

The full understanding of the deformation mechanisms in nanostructured bainite requires the local characterization of its mechanical properties, which are expected to change from one phase, bainitic ferrite, to another, austenite. This study becomes a challenging process due to the bainitic nanostructured nature and high Young's modulus. In this work, we have carried out such study by means of the combination of AFM-based techniques, such as nanoindentation and Peak Force Quantitative Nanomechanical Mapping (PF-QNM) measurements. We have addressed critically the limits and advantages of these techniques and been able to measure some elastoplastic parameters of both phases. Specifically, we have analyzed by PF-QNM two nanostructured bainitic steels, with a finer and a coarser structure, and found that both phases have a similar Young's modulus.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...