Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
1.
JHEP Rep ; 6(7): 101069, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38966234

RESUMEN

Background & Aims: The lymphatic system plays crucial roles in maintaining fluid balance and immune regulation. Studying the liver lymphatics has been considered challenging, as common lymphatic endothelial cell (LyEC) markers are expressed by other liver cells. Additionally, isolation of sufficient numbers of LyECs has been challenging because of their extremely low abundance (<0.01% of entire liver cell population) in a normal liver. Methods: Potential LyEC markers was identified using our published single-cell RNA sequencing (scRNA-seq) dataset (GSE147581) in mouse livers. Interleukin-7 (IL7) promoter-driven green fluorescent protein knock-in heterozygous mice were used for the validation of IL7 expression in LyECs in the liver, for the development of liver LyEC isolation protocol, and generating liver ischemia/reperfusion (I/R) injury. Scanning electron microscopy was used for the structural analysis of LyECs. Changes in LyEC phenotypes in livers of mice with I/R were determined by RNA-seq analysis. Results: Through scRNA-seq analysis, we have identified IL7 as an exclusive marker for liver LyECs, with no overlap with other liver cell types. Based on IL7 expression in liver LyECs, we have established an LyEC isolation method and observed distinct cell surface structures of LyECs with fenestrae and cellular pores (ranging from 100 to 400 nm in diameter). Furthermore, we identified LyEC genes that undergo alterations during I/R liver injuries. Conclusions: This study not only identified IL7 as an exclusively expressed gene in liver LyECs, but also enhanced our understanding of LyEC structures and demonstrated transcriptomic changes in injured livers. Impact and implications: Understanding the lymphatic system in the liver is challenging because of the absence of specific markers for liver LyEC. This study has identified IL7 as a reliable marker for LyECs, enabling the development of an effective method for their isolation, elucidating their unique cell surface structure, and identifying LyEC genes that undergo changes during liver damage. The development of IL7 antibodies for detecting it in human liver specimens will further advance our understanding of the liver lymphatic system in the future.

2.
Int J Cancer ; 2024 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-39039782

RESUMEN

Survival differences exist in colorectal cancer (CRC) patients by sex and disease stage. However, the potential molecular mechanism(s) are not well understood. Here we show that asparagine synthetase (ASNS) and G protein-coupled estrogen receptor-1 (GPER1) are critical sensors of nutrient depletion and linked to poorer outcomes for females with CRC. Using a 3D spheroid model of isogenic SW48 KRAS wild-type (WT) and G12A mutant (MT) cells grown under a restricted nutrient supply, we found that glutamine depletion inhibited cell growth in both cell lines, whereas ASNS and GPER1 expression were upregulated in KRAS MT versus WT. Estradiol decreased growth in KRAS WT but had no effect on MT cells. Selective GPER1 and ASNS inhibitors suppressed cell proliferation with increased caspase-3 activity of MT cells under glutamine depletion condition particularly in the presence of estradiol. In a clinical colon cancer cohort from The Cancer Genome Atlas, both high GPER1 and ASNS expression were associated with poorer overall survival for females only in advanced stage tumors. These results suggest KRAS MT cells have mechanisms in place that respond to decreased nutrient supply, typically observed in advanced tumors, by increasing the expression of ASNS and GPER1 to drive cell growth. Furthermore, KRAS MT cells are resistant to the protective effects of estradiol under nutrient deplete conditions. The findings indicate that GPER1 and ASNS expression, along with the interaction between nutrient supply and KRAS mutations shed additional light on the mechanisms underlying sex differences in metabolism and growth in CRC, and have clinical implications in the precision management of KRAS mutant CRC.

3.
bioRxiv ; 2024 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-38948715

RESUMEN

The distal bronchioles in Idiopathic Pulmonary Fibrosis (IPF) exhibit histopathological abnormalities such as bronchiolization, peribronchiolar fibrosis and honeycomb cysts that contribute to the overall architectural remodeling of lung tissue seen in the disease. Here we describe an additional histopathologic finding of epithelial desquamation in patients with IPF, wherein epithelial cells detach from the basement membrane of the distal bronchioles. To understand the mechanism driving this pathology, we performed spatial transcriptomics of the epithelial cells and spatial proteomics of the basement membrane of the distal bronchioles from IPF patients and patients with no prior history of lung disease. Our findings reveal a downregulation of cell junctional components, upregulation of epithelial-mesenchymal transition signatures and dysregulated basement membrane matrix in IPF distal bronchioles, facilitating epithelial desquamation. Further, functional assays identified regulation between Collagen IV in the matrix, and the junctional genes JUP and PLEC , that is crucial for maintaining distal bronchiolar homeostasis. In IPF, this balanced regulation between matrix and cell-junctions is disrupted, leading to loss of epithelial adhesion, peribronchiolar fibrosis and epithelial desquamation. Overall, our study suggests that in IPF the interplay between the loss of cell junctions and a dysregulated matrix results in desquamation of distal bronchiolar epithelium and lung remodeling, exacerbating the disease. One Sentence Summary: Two-way regulation of cell junctional proteins and matrix proteins drives cellular desquamation and fibrosis in the distal bronchioles of patients with Idiopathic Pulmonary Fibrosis.

4.
Oncoimmunology ; 12(1): 2260618, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37781235

RESUMEN

Although immune checkpoint inhibitor (ICI) therapy has dramatically improved outcome for metastatic melanoma patients, many patients do not benefit. Since adverse events may be severe, biomarkers for resistance would be valuable, especially in the adjuvant setting. We performed high-plex digital spatial profiling (DSP) using the NanoString GeoMx® on 53 pre-treatment specimens from ICI-treated metastatic melanoma cases. We interrogated 77 targets simultaneously in four molecular compartments defined by S100B for tumor, CD68 for macrophages, CD45 for leukocytes, and nonimmune stromal cells defined as regions negative for all three compartment markers but positive for SYTO 13. For DSP validation, we confirmed the results obtained for some immune markers, such as CD8, CD4, CD20, CD68, CD45, and PD-L1, by quantitative immunofluorescence (QIF). In the univariable analysis, 38 variables were associated with outcome, 14 of which remained significant after multivariable adjustment. Among them, CD95 was further validated using multiplex immunofluorescence in the Discovery immunotherapy (ITX) Cohort and an independent validation cohort with similar characteristics, showing an association between high levels of CD95 and shorter progression-free survival. We found that CD95 in stroma was associated with resistance to ICI. With further validation, this biomarker could have value to select patients that will not benefit from immunotherapy.


Asunto(s)
Inmunoterapia , Melanoma , Receptor fas , Humanos , Inmunoterapia/métodos , Melanoma/terapia , Supervivencia sin Progresión , Receptor fas/genética
5.
Chem Biol Interact ; 384: 110714, 2023 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-37716420

RESUMEN

Colon cancer is the third leading cause of cancer death globally. Although early screenings and advances in treatments have reduced mortality since 1970, identification of novel targets for therapeutic intervention is needed to address tumor heterogeneity and recurrence. Previous work identified aldehyde dehydrogenase 1B1 (ALDH1B1) as a critical factor in colon tumorigenesis. To investigate further, we utilized a human colon adenocarcinoma cell line (SW480) in which the ALDH1B1 protein expression has been knocked down by 80% via shRNA. Through multi-omics (transcriptomics, proteomics, and untargeted metabolomics) analysis, we identified the impact of ALDH1B1 knocking down (KD) on molecular signatures in colon cancer cells. Suppression of ALDH1B1 expression resulted in 357 differentially expressed genes (DEGs), 191 differentially expressed proteins (DEPs) and 891 differentially altered metabolites (DAMs). Functional annotation and enrichment analyses revealed that: (1) DEGs were enriched in integrin-linked kinase (ILK) signaling and growth and development pathways; (2) DEPs were mainly involved in apoptosis signaling and cellular stress response pathways; and (3) DAMs were associated with biosynthesis, intercellular and second messenger signaling. Collectively, the present study provides new molecular information associated with the cellular functions of ALDH1B1, which helps to direct future investigation of colon cancer.


Asunto(s)
Adenocarcinoma , Neoplasias del Colon , Humanos , Aldehído Deshidrogenasa/genética , Aldehído Deshidrogenasa/metabolismo , Aldehído Deshidrogenasa Mitocondrial/genética , Neoplasias del Colon/genética , Neoplasias del Colon/patología , Familia de Aldehído Deshidrogenasa 1/metabolismo , Multiómica
6.
J Immunother Cancer ; 11(7)2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37487666

RESUMEN

BACKGROUND: Interactions between immune and tumor cells are critical to determining cancer progression and response. In addition, preclinical prediction of immune-related drug efficacy is limited by interspecies differences between human and mouse, as well as inter-person germline and somatic variation. To address these gaps, we developed an autologous system that models the tumor microenvironment (TME) from individual patients with solid tumors. METHOD: With patient-derived bone marrow hematopoietic stem and progenitor cells (HSPCs), we engrafted a patient's hematopoietic system in MISTRG6 mice, followed by transfer of patient-derived xenograft (PDX) tissue, providing a fully genetically matched model to recapitulate the individual's TME. We used this system to prospectively study tumor-immune interactions in patients with solid tumor. RESULTS: Autologous PDX mice generated innate and adaptive immune populations; these cells populated the TME; and tumors from autologously engrafted mice grew larger than tumors from non-engrafted littermate controls. Single-cell transcriptomics revealed a prominent vascular endothelial growth factor A (VEGFA) signature in TME myeloid cells, and inhibition of human VEGF-A abrogated enhanced growth. CONCLUSIONS: Humanization of the interleukin 6 locus in MISTRG6 mice enhances HSPC engraftment, making it feasible to model tumor-immune interactions in an autologous manner from a bedside bone marrow aspirate. The TME from these autologous tumors display hallmarks of the human TME including innate and adaptive immune activation and provide a platform for preclinical drug testing.


Asunto(s)
Neoplasias , Factor A de Crecimiento Endotelial Vascular , Humanos , Animales , Ratones , Microambiente Tumoral , Oncología Médica , Modelos Animales de Enfermedad
7.
bioRxiv ; 2023 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-37205388

RESUMEN

The nutrient status of the tumor microenvironment has major impacts on cell growth. Under nutrient depletion, asparagine synthetase (ASNS)-mediated asparagine production increases to sustain cell survival. G protein-coupled estrogen receptor-1 (GPER1) signaling converges via cAMP/PI3K/AKT with KRAS signaling to regulate ASNS expression. However, the role of GPER1 in CRC progression is still debated, and the effect of nutrient supply on both ASNS and GPER1 relative to KRAS genotype is not well understood. Here, we modeled a restricted nutrient supply by eliminating glutamine from growing cancer cells in a 3D spheroid model of human female SW48 KRAS wild-type (WT) and KRAS G12A mutant (MT) CRC cells, to examine effects on ASNS and GPER1 expression. Glutamine depletion significantly inhibited cell growth in both KRAS MT and WT cells; however, ASNS and GPER1 were upregulated in KRAS MT compared to WT cells. When nutrient supply was adequate, ASNS and GPER1 were not altered between cell lines. The impact of estradiol, a ligand for GPER1, was examined for any additional effects on cell growth. Under glutamine deplete conditions, estradiol decreased the growth of KRAS WT cells but had no effect on KRAS MT cells; estradiol had no additive or diminutive effect on the upregulation of ASNS or GPER1 between the cell lines. We further examined the association of GPER1 and ASNS levels with overall survival in a clinical colon cancer cohort of The Cancer Genome Atlas. Both high GPER1 and ASNS expression associated with poorer overall survival for females only in advanced stage tumors. These findings suggest that KRAS MT cells have mechanisms in place that respond to decreased nutrient supply, typically observed in advanced tumors, by increasing the expression of ASNS and GPER1 to drive cell growth. Furthermore, KRAS MT cells are resistant to the protective effects of estradiol under nutrient deplete conditions. ASNS and GPER1 may therefore be potential therapeutic targets that can be exploited to manage and control KRAS MT CRC.

8.
Histochem Cell Biol ; 160(3): 193-198, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37247072

RESUMEN

Federal mandates, publishing requirements, and an interest in open science have all generated renewed attention on research data management and, in particular, data sharing practices. Due to the size and types of data they produce, bioimaging researchers confront specific challenges in aligning their data with FAIR principles, ensuring that it is findable, accessible, interoperable, and reusable. Although not always recognized by researchers, libraries can, and have been, offering support for data throughout its lifecycle by assisting with data management planning, acquisition, processing and analysis, and sharing and reuse of data. Libraries can educate researchers on best practices for research data management and sharing, facilitate connections to experts by coordinating sessions using peer educators and appropriate vendors, help assess the needs of different researcher groups to identify challenges or gaps, recommend appropriate repositories to make data as accessible as possible, and comply with funder and publisher requirements. As a centralized service within an institution, health sciences libraries have the capability to bridge silos and connect bioimaging researchers with specialized data support across campus and beyond.


Asunto(s)
Manejo de Datos , Difusión de la Información
9.
World J Biol Psychiatry ; 24(7): 603-613, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36994633

RESUMEN

BACKGROUND: Rates of Cannabis Use Disorder (CUD) are highest amongst young adults. Paucity of brain tissue samples limits the ability to examine the molecular basis of cannabis related neuropathology. Proteomic studies of neuron-derived extracellular vesicles (NDEs) isolated from the biofluids may reveal markers of neuropathology in CUD. METHODS: NDEs were extracted using ExoSORT, an immunoaffinity method to enrich NDEs from plasma samples from patients with young onset CUD and matched controls. Differential proteomic profiles were explored with Label Free Quantification (LFQ) mass spectrometry. Selected proteins were validated using orthogonal methods. RESULTS: A total of 231 (±10) proteins were identified in NDE preparations from CUD and controls of which 28 were differentially abundant between groups. The difference in abundance of properdin (CFP gene) was statistically significant. SHANK1 (SHANK1 gene), an adapter protein at the post-synaptic density, was nominally depleted in the CUD NDE preparations. CONCLUSION: In this pilot study, we noted a decrease in SHANK1 protein, involved in the structural and functional integrity of glutamatergic post-synapse, a potential peripheral signature of CUD neuropathology. The study shows that LFQ mass spectrometry proteomic analysis of NDEs derived from plasma may yield important insights into the synaptic pathology associated with CUD.


Asunto(s)
Vesículas Extracelulares , Abuso de Marihuana , Trastornos Relacionados con Sustancias , Adulto Joven , Humanos , Proyectos Piloto , Proteómica
10.
EC Psychol Psychiatr ; 12(3): 34-45, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36913221

RESUMEN

Background: Post-stroke depression (PSD) is a mental health condition that can develop after a stroke, with a higher risk of death and negative outcomes. However, limited research has explored how PSD incidence relates to brain locations in Chinese patients. This study aims to fill this gap by examining the link between PSD occurrence and brain lesion location, as well as the type of stroke experienced by the patient. Methods: We conducted a systematic search in databases to gather post-stroke depression literature published between January 1, 2015 and May 31, 2021. Following this, we performed a meta-analysis using RevMan to analyze the incidence of PSD associated with different brain regions and types of stroke separately. Results: We analyzed seven studies, with a total of 1604 participants. Our findings indicated that the incidence of PSD was higher when the stroke occurred in the left hemisphere compared to the right hemisphere (RevMan: Z = 8.93, P <0.001, OR = 2.69, 95% CI: 2.16-3.34, fixed model); PSD was more common when the stroke affected the cerebral cortex rather than the subcerebral cortex (RevMan: Z = 3.96, P <0.001, OR = 2.00, 95% CI: 1.42-2.81) and when it affected the anterior cortex compared to the posterior cortex (RevMan: Z = 3.85, P <0.001, OR = 1.89, 95% CI: 1.37-2.62). However, we did not find a significant difference in the occurrence of PSD between ischemic and hemorrhagic strokes (RevMan: Z = 0.62, P = 0.53, OR = 0.02, 95% CI: -0.05-0.09). Conclusions: Our findings revealed a higher likelihood of PSD in the left hemisphere, specifically in the cerebral cortex and anterior region.

11.
Nat Aging ; 3(1): 64-81, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36743663

RESUMEN

Aging is the predominant risk factor for atherosclerosis, the leading cause of death. Rare smooth muscle cell (SMC) progenitors clonally expand giving rise to up to ~70% of atherosclerotic plaque cells; however, the effect of age on SMC clonality is not known. Our results indicate that aged bone marrow (BM)-derived cells non-cell autonomously induce SMC polyclonality and worsen atherosclerosis. Indeed, in myeloid cells from aged mice and humans, TET2 levels are reduced which epigenetically silences integrin ß3 resulting in increased tumor necrosis factor [TNF]-α signaling. TNFα signals through TNF receptor 1 on SMCs to promote proliferation and induces recruitment and expansion of multiple SMC progenitors into the atherosclerotic plaque. Notably, integrin ß3 overexpression in aged BM preserves dominance of the lineage of a single SMC progenitor and attenuates plaque burden. Our results demonstrate a molecular mechanism of aged macrophage-induced SMC polyclonality and atherogenesis and suggest novel therapeutic strategies.


Asunto(s)
Aterosclerosis , Placa Aterosclerótica , Humanos , Ratones , Animales , Anciano , Placa Aterosclerótica/metabolismo , Médula Ósea/metabolismo , Integrina beta3/metabolismo , Aterosclerosis/genética , Miocitos del Músculo Liso , Músculo Liso/metabolismo
12.
Neuropsychopharmacology ; 48(3): 489-497, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36100654

RESUMEN

Clinical investigations suggest involvement of the metabotropic glutamate receptor 5 (mGluR5) in the pathophysiology of fear learning that underlies trauma-related disorders. Here, we utilized a 4-day fear learning paradigm combined with positron emission tomography (PET) to examine the relationship between mGluR5 availability and differences in the response of rats to repeated footshock exposure (FE). Specifically, on day 1, male (n = 16) and female (n = 12) rats received 15 footshocks and were compared with control rats who did not receive footshocks (n = 7 male; n = 4 female). FE rats were classified as low responders (LR) or high responders (HR) based on freezing to the context the following day (day 2). PET with [18F]FPEB was used to calculate regional mGluR5 binding potential (BPND) at two timepoints: prior to FE (i.e., baseline), and post-behavioral testing. Additionally, we used an unbiased proteomics approach to assess group and sex differences in prefrontal cortex (PFC) protein expression. Post-behavioral testing we observed decreased BPND in LR females, but increased BPND in HR males relative to baseline. Further, individuals displaying the greatest freezing during the FE context memory test had the largest increases in PFC BPND. Males and females displayed unique post-test molecular profiles: in males, the greatest differences were between FE and CON, including upregulation of mGluR5 and related molecular networks in FE, whereas the greatest differences among females were between the LR and HR groups. These findings suggest greater mGluR5 availability increases following footshock exposure may be related to greater contextual fear memory. Results additionally reveal sex differences in the molecular response to footshock, including differential involvement of mGluR5-related molecular networks.


Asunto(s)
Receptor del Glutamato Metabotropico 5 , Animales , Femenino , Masculino , Ratas , Tomografía de Emisión de Positrones/métodos , Receptor del Glutamato Metabotropico 5/metabolismo , Factores Sexuales
13.
Chem Biol Interact ; 368: 110175, 2022 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-36162455

RESUMEN

Several members of the aldehyde dehydrogenase (ALDH) family, especially ALDH1 isoenzymes, have been identified as biomarkers of cancer stem cells (CSCs), a small subpopulation of oncogenic cells with self-renewal and multipotency capability. Consistent with this contention, cell populations with high ALDH enzymatic activity exhibit greater carcinogenic potential. It has been reported that ALDH1, especially ALDH1A1, serves as a valuable biomarker for colon CSCs. However, the functional roles of ALDHs in CSCs and solid tumors of the colon tissue is not fully understood. The aim of the present study was to identify molecular signature associated with high ALDH activity in human colorectal adenocarcinoma (COLO320DM) cells by proteomics profiling. Aldefluor™ assay was performed to sort COLO320DM cells exhibiting high (ALDHhigh) and low (ALDHlow) ALDH activity. Label-free quantitative proteomics analyses were conducted on these two cell populations. Proteomics profiling revealed a total of 229 differentially expressed proteins (DEPs) in ALDHhigh relative to ALDHlow cells, of which 182 were down-regulated and 47 were up-regulated. In agreement with previous studies, ALDH1A1 appeared to be the principal ALDH isozyme contributing to the Aldefluor™ assay activity in COLO320DM cells. Ingenuity pathway analysis of the proteomic datasets indicated that DEPs were associated with mitochondrial dysfunction, sirtuin signaling, oxidative phosphorylation and nucleotide excision repair. Our proteomics study predicts that high ALDH1A1 activity may be involved in these cellular pathways to promote a metabolic switch and cellular survival of CSCs.


Asunto(s)
Adenocarcinoma , Neoplasias del Colon , Humanos , Aldehído Deshidrogenasa/genética , Aldehído Deshidrogenasa/metabolismo , Adenocarcinoma/metabolismo , Fosforilación Oxidativa , Proteómica , Neoplasias del Colon/patología , Familia de Aldehído Deshidrogenasa 1 , Células Madre Neoplásicas/metabolismo , Daño del ADN , Línea Celular Tumoral
14.
JCI Insight ; 7(13)2022 07 08.
Artículo en Inglés | MEDLINE | ID: mdl-35801589

RESUMEN

People with HIV (PWH) on antiretroviral therapy (ART) experience elevated rates of neurological impairment, despite controlling for demographic factors and comorbidities, suggesting viral or neuroimmune etiologies for these deficits. Here, we apply multimodal and cross-compartmental single-cell analyses of paired cerebrospinal fluid (CSF) and peripheral blood in PWH and uninfected controls. We demonstrate that a subset of central memory CD4+ T cells in the CSF produced HIV-1 RNA, despite apparent systemic viral suppression, and that HIV-1-infected cells were more frequently found in the CSF than in the blood. Using cellular indexing of transcriptomes and epitopes by sequencing (CITE-seq), we show that the cell surface marker CD204 is a reliable marker for rare microglia-like cells in the CSF, which have been implicated in HIV neuropathogenesis, but which we did not find to contain HIV transcripts. Through a feature selection method for supervised deep learning of single-cell transcriptomes, we find that abnormal CD8+ T cell activation, rather than CD4+ T cell abnormalities, predominated in the CSF of PWH compared with controls. Overall, these findings suggest ongoing CNS viral persistence and compartmentalized CNS neuroimmune effects of HIV infection during ART and demonstrate the power of single-cell studies of CSF to better understand the CNS reservoir during HIV infection.


Asunto(s)
Infecciones por VIH , VIH-1 , Infecciones por VIH/tratamiento farmacológico , Infecciones por VIH/patología , VIH-1/genética , Humanos , Estudios Longitudinales , Microglía/patología , Transcripción Viral
15.
Chem Biol Interact ; 360: 109931, 2022 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-35429548

RESUMEN

Alcohol consumption is a global healthcare problem with enormous social, economic, and clinical consequences. The liver sustains the earliest and the greatest degree of tissue injury due to chronic alcohol consumption and it has been estimated that alcoholic liver disease (ALD) accounts for almost 50% of all deaths from cirrhosis in the world. In this study, we used a modified Lieber-DeCarli (LD) diet to treat mice with alcohol and simulate chronic alcohol drinking. Using an untargeted metabolomics approach, our aim was to identify the various metabolites and pathways that are altered in the early stages of ALD. Histopathology showed minimal changes in the liver after 6 weeks of alcohol consumption. However, untargeted metabolomics analyses identified 304 metabolic features that were either up- or down-regulated in the livers of ethanol-consuming mice. Pathway analysis revealed significant alcohol-induced alterations, the most significant of which was in the FXR/RXR activation pathway. Targeted metabolomics focusing on bile acid biosynthesis showed elevated taurine-conjugated cholic acid compounds in ethanol-consuming mice. In summary, we showed that the changes in the liver metabolome manifest very early in the development of ALD, and when minimal changes in liver histopathology have occurred. Although alterations in biochemical pathways indicate a complex pathology in the very early stages of alcohol consumption, bile acid changes may serve as biomarkers of the early onset of ALD.


Asunto(s)
Ácidos y Sales Biliares , Hepatopatías Alcohólicas , Animales , Ácidos y Sales Biliares/metabolismo , Etanol/metabolismo , Hígado/metabolismo , Hepatopatías Alcohólicas/patología , Metabolómica , Ratones , Ratones Endogámicos C57BL
16.
Med Ref Serv Q ; 41(1): 13-25, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35225737

RESUMEN

Bioinformatics is essential for basic and clinical research. Peer-to-peer (P2P) teaching was used to respond to the bioinformatics training needs at a research-intensive institution. In addition to the data collected from the workshops, personal experiences of the teachers were used to understand incentives, challenges, and benefits of P2P teaching. Developing communication skills such as confidence in teaching, explaining complex concepts, and better understanding of topics benefited P2P teachers. Lack of time and classroom management were identified as major challenges. Hence, P2P teaching can be beneficial not only for bioinformatics trainees but also as a professional development opportunity for peer teachers.


Asunto(s)
Biología Computacional , Educación de Pregrado en Medicina , Curriculum , Motivación , Grupo Paritario , Enseñanza
17.
Nat Commun ; 12(1): 7179, 2021 12 10.
Artículo en Inglés | MEDLINE | ID: mdl-34893592

RESUMEN

During lung fibrosis, the epithelium induces signaling to underlying mesenchyme to generate excess myofibroblasts and extracellular matrix; herein, we focus on signaling in the mesenchyme. Our studies indicate that platelet-derived growth factor receptor (PDGFR)-ß+ cells are the predominant source of myofibroblasts and Kruppel-like factor (KLF) 4 is upregulated in PDGFR-ß+ cells, inducing TGFß pathway signaling and fibrosis. In fibrotic lung patches, KLF4 is down-regulated, suggesting KLF4 levels decrease as PDGFR-ß+ cells transition into myofibroblasts. In contrast to PDGFR-ß+ cells, KLF4 reduction in α-smooth muscle actin (SMA)+ cells non-cell autonomously exacerbates lung fibrosis by inducing macrophage accumulation and pro-fibrotic effects of PDGFR-ß+ cells via a Forkhead box M1 to C-C chemokine ligand 2-receptor 2 pathway. Taken together, in the context of lung fibrosis, our results indicate that KLF4 plays opposing roles in PDGFR-ß+ cells and SMA+ cells and highlight the importance of further studies of interactions between distinct mesenchymal cell types.


Asunto(s)
Factor 4 Similar a Kruppel/genética , Factor 4 Similar a Kruppel/metabolismo , Pulmón/metabolismo , Células Madre Mesenquimatosas/metabolismo , Miofibroblastos/metabolismo , Animales , Proliferación Celular , Modelos Animales de Enfermedad , Regulación hacia Abajo , Matriz Extracelular/metabolismo , Femenino , Fibroblastos/metabolismo , Fibrosis , Humanos , Pulmón/patología , Lesión Pulmonar/metabolismo , Lesión Pulmonar/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Receptor beta de Factor de Crecimiento Derivado de Plaquetas/metabolismo , Enfermedades Respiratorias/metabolismo , Transducción de Señal , Factor de Crecimiento Transformador beta/metabolismo
18.
Proc Natl Acad Sci U S A ; 118(47)2021 11 23.
Artículo en Inglés | MEDLINE | ID: mdl-34782454

RESUMEN

Cholesterol biosynthetic intermediates, such as lanosterol and desmosterol, are emergent immune regulators of macrophages in response to inflammatory stimuli or lipid overloading, respectively. However, the participation of these sterols in regulating macrophage functions in the physiological context of atherosclerosis, an inflammatory disease driven by the accumulation of cholesterol-laden macrophages in the artery wall, has remained elusive. Here, we report that desmosterol, the most abundant cholesterol biosynthetic intermediate in human coronary artery lesions, plays an essential role during atherogenesis, serving as a key molecule integrating cholesterol homeostasis and immune responses in macrophages. Depletion of desmosterol in myeloid cells by overexpression of 3ß-hydroxysterol Δ24-reductase (DHCR24), the enzyme that catalyzes conversion of desmosterol to cholesterol, promotes the progression of atherosclerosis. Single-cell transcriptomics in isolated CD45+CD11b+ cells from atherosclerotic plaques demonstrate that depletion of desmosterol increases interferon responses and attenuates the expression of antiinflammatory macrophage markers. Lipidomic and transcriptomic analysis of in vivo macrophage foam cells demonstrate that desmosterol is a major endogenous liver X receptor (LXR) ligand involved in LXR/retinoid X receptor (RXR) activation and thus macrophage foam cell formation. Decreased desmosterol accumulation in mitochondria promotes macrophage mitochondrial reactive oxygen species production and NLR family pyrin domain containing 3 (NLRP3)-dependent inflammasome activation. Deficiency of NLRP3 or apoptosis-associated speck-like protein containing a CARD (ASC) rescues the increased inflammasome activity and atherogenesis observed in desmosterol-depleted macrophages. Altogether, these findings underscore the critical function of desmosterol in the atherosclerotic plaque to dampen inflammation by integrating with macrophage cholesterol metabolism and inflammatory activation and protecting from disease progression.


Asunto(s)
Aterosclerosis/tratamiento farmacológico , Desmosterol/farmacología , Inflamasomas/metabolismo , Inflamación/tratamiento farmacológico , Activación de Macrófagos/efectos de los fármacos , Animales , Aterosclerosis/metabolismo , Aterosclerosis/patología , Colesterol/metabolismo , Vasos Coronarios , Células Espumosas/metabolismo , Humanos , Inflamación/metabolismo , Metabolismo de los Lípidos , Receptores X del Hígado/metabolismo , Macrófagos/metabolismo , Masculino , Ratones , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Oxidorreductasas actuantes sobre Donantes de Grupo CH-CH/genética , Oxidorreductasas actuantes sobre Donantes de Grupo CH-CH/metabolismo , Placa Aterosclerótica/metabolismo , Esteroles/metabolismo
19.
Ocul Surf ; 22: 190-203, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34425299

RESUMEN

PURPOSE: The purpose of this study was to elucidate the role and molecular consequences of impaired glutathione (GSH) biosynthesis on eye development. METHODS: GSH biosynthesis was impaired in surface ectoderm-derived ocular tissues by crossing Gclcf/f mice with hemizygous Le-Cre transgenic mice to produce Gclcf/f/Le-CreTg/- (KO) mice. Control mice included Gclcf/fand Gclcwt/wt/Le-CreTg/- mice (CRE). Eyes from all mice (at various stages of eye development) were subjected to histological, immunohistochemical, Western blot, RT-qPCR, RNA-seq, and subsequent Gene Ontology, Ingenuity Pathway Analysis and TRANSFAC analyses. PAX6 transactivation activity was studied using a luciferase reporter assay in HEK293T cells depleted of GSH using buthionine sulfoximine (BSO). RESULTS: Deletion of Gclc diminished GSH levels, increased reactive oxygen species (ROS), and caused an overt microphthalmia phenotype characterized by malformation of the cornea, iris, lens, and retina that is distinct from and much more profound than the one observed in CRE mice. In addition, only the lenses of KO mice displayed reduced crystallin (α, ß), PITX3 and Foxe3 expression. RNA-seq analyses at postnatal day 1 revealed 1552 differentially expressed genes (DEGs) in the lenses of KO mice relative to those from Gclcf/f mice, with Crystallin and lens fiber cell identity genes being downregulated while lens epithelial cell identity and immune response genes were upregulated. Bioinformatic analysis of the DEGs implicated PAX6 as a key upstream regulator. PAX6 transactivation activity was impaired in BSO-treated HEK293T cells. CONCLUSIONS: These data suggest that impaired ocular GSH biosynthesis may disrupt eye development and PAX6 function.


Asunto(s)
Cristalino , Animales , Proteínas del Ojo/genética , Factores de Transcripción Forkhead , Glutatión , Células HEK293 , Humanos , Ratones , Ratones Transgénicos , Morfogénesis , Factor de Transcripción PAX6/genética
20.
Reprod Biomed Online ; 43(4): 614-626, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34417138

RESUMEN

RESEARCH QUESTION: Can cumulus cells be used as a non-invasive target for the study of determinants of preimplantation embryo quality? DESIGN: Cumulus cells were collected from monosomy 21, trisomy 21 and euploid embryos and subjected to RNA sequencing analysis and real-time polymerase chain reaction assays. The differential gene expression was analysed for different comparisons. RESULTS: A total of 3122 genes in monosomy 21 cumulus cells and 19 genes in trisomy 21 cumulus cells were differentially expressed compared with euploid cumulus cells. Thirteen of these genes were differentially expressed in both monosomy and trisomy 21, compared with euploid, including disheveled segment polarity protein 2 (DVL2), cellular communication network factor 1 (CCN1/CYR61) and serum response factor (SRF), which have been previously implicated in embryo developmental competence. In addition, ingenuity pathway analysis revealed cell-cell contact function to be affected in both monosomy and trisomy 21 cumulus cells. CONCLUSIONS: These findings support the use of cumulus cell gene expression analysis for the development of biomarkers evaluating oocyte quality for patients undergoing fertility preservation of oocytes.


Asunto(s)
Células del Cúmulo/metabolismo , Proteína 61 Rica en Cisteína/metabolismo , Proteínas Dishevelled/metabolismo , Síndrome de Down/metabolismo , Factor de Respuesta Sérica/metabolismo , Adulto , Biomarcadores/metabolismo , Cromosomas Humanos Par 21/metabolismo , Embrión de Mamíferos , Femenino , Humanos , Monosomía , Oocitos , Embarazo , Prueba de Estudio Conceptual , Transcriptoma
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA