Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Materials (Basel) ; 15(9)2022 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-35591653

RESUMEN

The main aim of the study was to synthesize and analyze spectral data to determine the structure and stereometry of the carbon-based porous material internal structure. Samples of a porous biomaterial were synthesized through anionic polymerization following our own patent and then carbonized. The samples were investigated using MALDI ToF MS, FTIR ATR spectroscopy, optic microscopy, SEM, confocal laser scanning microscopy and CMT imaging. The analysis revealed the chemical and stereological structure of the obtained porous biomaterial. Then, the parameters characterizing the pore geometry and the porosity of the samples were calculated. The developed material can be used to collect adsorption of breathing phase samples to determine the parity composition of exhaled air.

2.
Materials (Basel) ; 14(9)2021 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-33923089

RESUMEN

The main aim of this study was to analyze microtomographic data to determine the geometric dimensions of a ceramic porous material's internal structure. Samples of a porous corundum biomaterial were the research material. The samples were prepared by chemical foaming and were measured using an X-ray scanner. In the next stage, 3D images of the samples were generated and analyzed using Thermo Scientific Avizo software. The analysis enabled the isolation of individual pores. Then, the parameters characterizing the pore geometry and the porosity of the samples were calculated. The last part of the research consisted of verifying the developed method by comparing the obtained results with the parameters obtained from the microscopic examinations of the biomaterial. The comparison of the results confirmed the correctness of the developed method. The developed methodology can be used to analyze biomaterial samples to assess the geometric dimensions of biomaterial pores.

3.
Biomed Tech (Berl) ; 64(2): 215-223, 2019 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-29775436

RESUMEN

The main goal of the study was to develop a model of the degree of surface porosity of a biomaterial intended for implants. The model was implemented using MATLAB. A computer simulation was carried out based on the developed model, which resulted in a two-dimensional image of the modelled surface. Then, an algorithm for computerised image analysis of the surface of the actual oxide bioceramic layer was developed, which enabled determining its degree of porosity. In order to obtain the confocal micrographs of a few areas of the biomaterial, measurements were performed using the LEXT OLS4000 confocal laser microscope. The image analysis was carried out using MountainsMap Premium and SPIP. The obtained results allowed determining the input parameters of the program, on the basis of which porous biomaterial surface images were generated. The last part of the study involved verification of the developed model. The modelling method was tested by comparing the obtained results with the experimental data obtained from the analysis of surface images of the test material.


Asunto(s)
Materiales Biocompatibles/química , Cerámica/química , Materiales Biocompatibles/uso terapéutico , Cerámica/uso terapéutico , Simulación por Computador , Porosidad , Prótesis e Implantes
4.
J Phys Chem B ; 119(17): 5662-70, 2015 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-25839675

RESUMEN

In the present work three-dimensional (3-D) surface topography of Cu-Ni nanoparticles in hydrogenated amorphous carbon (Cu-Ni NPs @ a-C:H) with constant thickness of Cu and three thicknesses of Ni prepared by RF-Plasma Enhanced Chemical Vapor Deposition (RF-PECVD) system were investigated. The thin films of Cu-Ni NPs @ a-C:H with constant thickness of Cu and three thicknesses of Ni deposited by radio frequency (RF)-sputtering and RF-PECVD systems, were characterized. To determine the mass thickness and atomic structure of the films, the Rutherford backscattering spectroscopy (RBS) spectra was applied. The absorption spectra were applied to study localized surface plasmon resonance (LSPR) peaks of Cu-Ni NPs (observed around 608 nm in visible spectra), which is widened and shifted to lower wavelengths as the thickness of Ni over layer increases, and their changes are also evaluated by the 3-D surface topography. These nanostructures were investigated over square areas of 1 µm × 1 µm using atomic force microscopy (AFM) and multifractal analysis. Topographic characterization of surface samples (in amplitude, spatial distribution, and pattern of surface characteristics) highlighted 3-D surfaces with multifractal features which can be quantitatively estimated by the multifractal measures. The 3-D surface topography Cu-Ni NPs @ a-C:H with constant thickness of Cu and three thicknesses of Ni prepared by RF-PECVD system can be characterized using the multifractal geometry in correlation with the surface statistical parameters.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...