Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Lipid Res ; 54(5): 1283-99, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23431047

RESUMEN

Modulating bile acid synthesis has long been considered a good strategy by which to improve cholesterol homeostasis in humans. The farnesoid X receptor (FXR), the key regulator of bile acid synthesis, was, therefore, identified as an interesting target for drug discovery. We compared the effect of four, structurally unrelated, synthetic FXR agonists in two fat-fed rodent species and observed that the three most potent and selective agonists decreased plasma cholesterol in LDL receptor-deficient (Ldlr (-/-)) mice, but none did so in hamsters. Detailed investigation revealed increases in the expression of small heterodimer partner (Shp) in their livers and of intestinal fibroblast growth factor 15 or 19 (Fgf15/19) in mice only. Cyp7a1 expression and fecal bile acid (BA) excretion were strongly reduced in mice and hamsters by all four FXR agonists, whereas bile acid pool sizes were reduced in both species by all but the X-Ceptor compound in hamsters. In Ldlr (-/-) mice, the predominant bile acid changed from cholate to the more hydrophilic ß-muricholate due to a strong repression of Cyp8b1 and increase in Cyp3a11 expression. However, FXR agonists caused only minor changes in the expression of Cyp8b1 and in bile acid profiles in hamsters. In summary, FXR agonist-induced decreases in bile acid pool size and lipophilicity and in cholesterol absorption and synthesis could explain the decreased plasma cholesterol in Ldlr (-/-) mice. In hamsters, FXR agonists reduced bile acid pool size to a smaller extent with minor changes in bile acid profile and reductions in sterol absorption, and consequently, plasma cholesterol was unchanged.


Asunto(s)
Ácidos y Sales Biliares/metabolismo , Colesterol/metabolismo , Receptores Citoplasmáticos y Nucleares/metabolismo , Animales , Ácidos y Sales Biliares/genética , Colesterol 7-alfa-Hidroxilasa/metabolismo , Ácido Cólico/metabolismo , Cricetinae , Citocromo P-450 CYP3A/metabolismo , Regulación de la Expresión Génica , Metabolismo de los Lípidos , Proteínas de la Membrana/metabolismo , Ratones , Ratones Transgénicos , Receptores Citoplasmáticos y Nucleares/agonistas , Receptores Citoplasmáticos y Nucleares/genética , Esteroide 12-alfa-Hidroxilasa/metabolismo
2.
J Lipid Res ; 52(6): 1188-1199, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21464203

RESUMEN

It is claimed that apoA-I expression is repressed in mice by cholic acid (CA) and its taurine conjugate, taurocholic acid (TCA) via farnesoid X receptor (FXR) activation. We measured apoA-I expression in mice, hamsters, and rats treated with highly potent and selective synthetic FXR agonists or with TCA. All of the synthetic agonists bound to FXR with high affinity in a scintillation proximity assay. However, TCA did not compete with the radioligand up to the highest concentration used (100 µM). The C-site regulatory region of apoA-I, through which FXR has been reported to regulate its expression, is completely conserved across the species investigated. In both male and female human apoA-I-transgenic mice, we reproduced the previously reported strong inhibition of human apoA-I expression upon treatment with the typical supraphysiological dose of TCA used in such studies. However, in contrast to some previous reports, TCA did not repress murine apoA-I expression in the same mice. Also, more-potent and -selective FXR agonists did not affect human or murine apoA-I expression in this model. In LDL receptor-deficient mice and Golden Syrian hamsters, selective FXR agonists did not affect apoA-I expression, whereas in Wistar rats, some even increased apoA-I expression. In conclusion, selective FXR agonists do not repress apoA-I expression in rodents. Repression of human apoA-I expression by TCA in transgenic mice is probably mediated through FXR-independent mechanisms.


Asunto(s)
Apolipoproteína A-I , Regulación de la Expresión Génica/efectos de los fármacos , Hígado/metabolismo , Receptores Citoplasmáticos y Nucleares/metabolismo , Ácido Taurocólico/farmacología , Animales , Apolipoproteína A-I/genética , Apolipoproteína A-I/metabolismo , Sitios de Unión , Secuencia Conservada , Cricetinae , Femenino , Humanos , Masculino , Mesocricetus , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Regiones Promotoras Genéticas/efectos de los fármacos , Unión Proteica , ARN Mensajero/análisis , ARN Mensajero/biosíntesis , Ratas , Ratas Wistar , Receptores Citoplasmáticos y Nucleares/agonistas , Receptores Citoplasmáticos y Nucleares/antagonistas & inhibidores , Receptores Citoplasmáticos y Nucleares/genética , Conteo por Cintilación , Especificidad de la Especie
4.
Lipids Health Dis ; 9: 75, 2010 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-20642861

RESUMEN

BACKGROUND: The risk of cardiovascular disease is inversely correlated to level of plasma HDL-c. Moreover, reverse cholesterol transport (RCT) from peripheral tissues to the liver is the most widely accepted mechanism linked to the anti-atherosclerotic activity of HDL. The apolipoprotein A-I (apoA-I) and the ABC transporters play a key role in this process.Adipose tissue constitutes the body's largest pool of free cholesterol. The adipose cell could therefore be regarded as a key factor in cholesterol homeostasis. The present study investigates the capacity of primary cultures of mature human adipocytes to release cholesterol and explores the relationships between apoA-I, ABCA1, and apoE as well as the signaling pathways that could be potentially involved. RESULTS: We demonstrate that apoA-I induces a strong increase in cholesterol release and apoE secretion from adipocytes, whereas it has no transcriptional effect on ABCA1 or apoE genes. Furthermore, brefeldin A (BFA), an intracellular trafficking inhibitor, reduces basal cholesterol and apoE secretion, but does not modify induction by apoA-I. The use of statins also demonstrates that apoA-I stimulated cholesterol release is independent of HMG-CoA reductase activation. CONCLUSION: Our work highlights the fact that adipose tissue, and particularly adipocytes, may largely contribute to RCT via a mechanism specifically regulated within these cells. This further supports the argument that adipose tissue must be regarded as a major factor in the development of cardiovascular diseases, in particular atherosclerosis.


Asunto(s)
Adipocitos/metabolismo , Apolipoproteína A-I/fisiología , Apolipoproteínas E/metabolismo , Enfermedades Cardiovasculares/fisiopatología , Colesterol/metabolismo , Transportador 1 de Casete de Unión a ATP , Transportadoras de Casetes de Unión a ATP/genética , Transportadoras de Casetes de Unión a ATP/metabolismo , Adipocitos/efectos de los fármacos , Adulto , Apolipoproteínas E/genética , Aterosclerosis/fisiopatología , Células Cultivadas , AMP Cíclico/metabolismo , Inhibidores Enzimáticos/farmacología , Femenino , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Hidroximetilglutaril-CoA Reductasas/metabolismo , Persona de Mediana Edad , Sistemas de Mensajero Secundario/efectos de los fármacos , Vías Secretoras/efectos de los fármacos , Grasa Subcutánea/citología , Grasa Subcutánea/efectos de los fármacos , Grasa Subcutánea/metabolismo , Grasa Subcutánea/fisiopatología , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA