Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
JACC Cardiovasc Interv ; 15(4): 368-377, 2022 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-35210043

RESUMEN

OBJECTIVES: This study sought to determine the degree of Evolut (Medtronic) leaflet pinning, diameter expansion, leaflet overhang, and performance at different implant depths of the balloon-expandable Sapien 3 (S3, Edwards Lifesciences LLC) transcatheter heart valve (THV) within the Evolut THV. BACKGROUND: Preservation of coronary access and flow is a major factor when considering the treatment of failed Evolut THVs. METHODS: An in vitro study was performed with 20-, 23-, 26-, and 29-mm S3 THVs deployed within 23-, 26-, 29-, and 34-mm Evolut R THVs, respectively. The S3 outflow was positioned at various depths at node 4, 5, and 6 of the Evolut R. Neoskirt height, leaflet overhang, performance, and Evolut R valve housing diameter expansion were assessed under physiological conditions as per ISO 5840-3 standard. RESULTS: The neoskirt height for the Evolut R was shorter when the S3 outflow was positioned at node 4 compared with node 6 (node 4 height for 23 mm = 16.3 mm, 26 mm = 17.1 mm, 29 mm = 18.3 mm, and 34 mm = 19.9 mm vs node 6 height for 23 mm = 23.9 mm, 26 mm = 23.4 mm, 29 mm = 24.7 mm, and 34 mm = 27 mm Evolut R). All configurations exhibited acceptable hydrodynamic performance irrespective of the degree of leaflet overhang, except the 29-mm S3 implanted in 34-mm Evolut R at node 4 (regurgitant fraction >20%). The valve housing radius of the index Evolut R increased when the S3 was implanted, with the increase ranging from 0 to 2.5 mm. CONCLUSIONS: Placement of the S3 at a lower implant position within an index Evolut R reduces the neoskirt height with no significant compromise to S3 valve function despite a higher degree of leaflet overhang. Low S3 implantation may facilitate future coronary access after redo transcatheter aortic valve replacement.


Asunto(s)
Estenosis de la Válvula Aórtica , Prótesis Valvulares Cardíacas , Reemplazo de la Válvula Aórtica Transcatéter , Válvula Aórtica/diagnóstico por imagen , Válvula Aórtica/cirugía , Estenosis de la Válvula Aórtica/cirugía , Humanos , Diseño de Prótesis , Reemplazo de la Válvula Aórtica Transcatéter/efectos adversos , Resultado del Tratamiento
2.
Front Neuroeng ; 4: 11, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-22016734

RESUMEN

Regenerative peripheral nerve interfaces have been proposed as viable alternatives for the natural control of robotic prosthetic devices. However, sensory and motor axons at the neural interface are of mixed sub-modality types, which difficult the specific recording from motor axons and the eliciting of precise sensory modalities through selective stimulation. Here we evaluated the possibility of using type specific neurotrophins to preferentially entice the regeneration of defined axonal populations from transected peripheral nerves into separate compartments. Segregation of mixed sensory fibers from dorsal root ganglion neurons was evaluated in vitro by compartmentalized diffusion delivery of nerve growth factor (NGF) and neurotrophin-3 (NT-3), to preferentially entice the growth of TrkA+ nociceptive and TrkC+ proprioceptive subsets of sensory neurons, respectively. The average axon length in the NGF channel increased 2.5-fold compared to that in saline or NT-3, whereas the number of branches increased threefold in the NT-3 channels. These results were confirmed using a 3D "Y"-shaped in vitro assay showing that the arm containing NGF was able to entice a fivefold increase in axonal length of unbranched fibers. To address if such segregation can be enticed in vivo, a "Y"-shaped tubing was used to allow regeneration of the transected adult rat sciatic nerve into separate compartments filled with either NFG or NT-3. A significant increase in the number of CGRP+ pain fibers were attracted toward the sural nerve, while N-52+ large-diameter axons were observed in the tibial and NT-3 compartments. This study demonstrates the guided enrichment of sensory axons in specific regenerative chambers, and supports the notion that neurotrophic factors can be used to segregate sensory and perhaps motor axons in separate peripheral interfaces.

3.
Front Neuroeng ; 2: 5, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-19506704

RESUMEN

Direct interfacing of transected peripheral nerves with advanced robotic prosthetic devices has been proposed as a strategy for achieving natural motor control and sensory perception of such bionic substitutes, thus fully functionally replacing missing limbs in amputees. Multi-electrode arrays placed in the brain and peripheral nerves have been used successfully to convey neural control of prosthetic devices to the user. However, reactive gliosis, micro hemorrhages, axonopathy and excessive inflammation currently limit their long-term use. Here we demonstrate that enticement of peripheral nerve regeneration through a non-obstructive multi-electrode array, after either acute or chronic nerve amputation, offers a viable alternative to obtain early neural recordings and to enhance long-term interfacing of nerve activity. Non-restrictive electrode arrays placed in the path of regenerating nerve fibers allowed the recording of action potentials as early as 8 days post-implantation with high signal-to-noise ratio, as long as 3 months in some animals, and with minimal inflammation at the nerve tissue-metal electrode interface. Our findings suggest that regenerative multi-electrode arrays of open design allow early and stable interfacing of neural activity from amputated peripheral nerves and might contribute towards conveying full neural control and sensory feedback to users of robotic prosthetic devices.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...