Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Environ Manage ; 331: 117039, 2023 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-36701888

RESUMEN

Against a background of intensifying climate-induced disturbances, the need to enhance the resilience of forests and forest management is gaining urgency. In forest management, multiple trade-offs exist between different demands as well as across and within temporal and spatial scales. However, methods to assess resilience that consider these trade-offs are presently lacking. Here we propose a hierarchical framework of principles, criteria, and indicators to assess the resilience of a social-ecological system by focusing on the mechanisms behind resilience. This hierarchical framework balances trade-offs between mechanisms, different parts of the social-ecological system, ecosystem services, and spatial as well as temporal scales. The framework was developed to be used in a participatory manner in forest management planning. It accounts for the major parts of the forest-related social-ecological system and considers the multiple trade-offs involved. We demonstrate the utility of the framework by applying it to a landscape dominated by Norway spruce (Picea abies (L.) Karst.) in Central Europe, managed for three different management goals. The framework highlights how forest resilience varies with the pursued management goals and related management strategies. The framework is flexible and can be applied to various forest management contexts as part of a participatory process with stakeholders. It thus is an important step towards operationalizing social-ecological resilience in forest management systems.


Asunto(s)
Ecosistema , Bosques , Europa (Continente) , Noruega , Cambio Climático
2.
Glob Chang Biol ; 29(5): 1359-1376, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36504289

RESUMEN

Over the last decades, the natural disturbance is increasingly putting pressure on European forests. Shifts in disturbance regimes may compromise forest functioning and the continuous provisioning of ecosystem services to society, including their climate change mitigation potential. Although forests are central to many European policies, we lack the long-term empirical data needed for thoroughly understanding disturbance dynamics, modeling them, and developing adaptive management strategies. Here, we present a unique database of >170,000 records of ground-based natural disturbance observations in European forests from 1950 to 2019. Reported data confirm a significant increase in forest disturbance in 34 European countries, causing on an average of 43.8 million m3 of disturbed timber volume per year over the 70-year study period. This value is likely a conservative estimate due to under-reporting, especially of small-scale disturbances. We used machine learning techniques for assessing the magnitude of unreported disturbances, which are estimated to be between 8.6 and 18.3 million m3 /year. In the last 20 years, disturbances on average accounted for 16% of the mean annual harvest in Europe. Wind was the most important disturbance agent over the study period (46% of total damage), followed by fire (24%) and bark beetles (17%). Bark beetle disturbance doubled its share of the total damage in the last 20 years. Forest disturbances can profoundly impact ecosystem services (e.g., climate change mitigation), affect regional forest resource provisioning and consequently disrupt long-term management planning objectives and timber markets. We conclude that adaptation to changing disturbance regimes must be placed at the core of the European forest management and policy debate. Furthermore, a coherent and homogeneous monitoring system of natural disturbances is urgently needed in Europe, to better observe and respond to the ongoing changes in forest disturbance regimes.


Asunto(s)
Escarabajos , Ecosistema , Animales , Árboles , Bosques , Europa (Continente)
3.
Sci Adv ; 8(10): eabm7891, 2022 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-35275731

RESUMEN

In the future with climate change, we expect more forest and tree damage due to the increasing strength and changing trajectories of tropical cyclones (TCs). However, to date, we have limited information to estimate likely damage levels, and nobody has ever measured exactly how forest trees behave mechanically during a TC. In 2018, a category-5 TC destroyed trees in our ongoing research plots, in which we were measuring tree movement and wind speed in two different tree spacing plots. We found damaged trees in only the wider spaced plot. Here, we present how trees dynamically respond to strong winds during a TC. Sustained strong winds obviously trigger the damage to trees and forests but inter-tree spacing is also a key factor because the level of support from neighboring trees modifies the effective "stiffness" against the wind both at the single tree and whole forest stand level.

5.
Environ Res Lett ; 12(3): 034027, 2017 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-28855959

RESUMEN

Recent studies projecting future climate change impacts on forests mainly consider either the effects of climate change on productivity or on disturbances. However, productivity and disturbances are intrinsically linked because 1) disturbances directly affect forest productivity (e.g. via a reduction in leaf area, growing stock or resource-use efficiency), and 2) disturbance susceptibility is often coupled to a certain development phase of the forest with productivity determining the time a forest is in this specific phase of susceptibility. The objective of this paper is to provide an overview of forest productivity changes in different forest regions in Europe under climate change, and partition these changes into effects induced by climate change alone and by climate change and disturbances. We present projections of climate change impacts on forest productivity from state-of-the-art forest models that dynamically simulate forest productivity and the effects of the main European disturbance agents (fire, storm, insects), driven by the same climate scenario in seven forest case studies along a large climatic gradient throughout Europe. Our study shows that, in most cases, including disturbances in the simulations exaggerate ongoing productivity declines or cancel out productivity gains in response to climate change. In fewer cases, disturbances also increase productivity or buffer climate-change induced productivity losses, e.g. because low severity fires can alleviate resource competition and increase fertilization. Even though our results cannot simply be extrapolated to other types of forests and disturbances, we argue that it is necessary to interpret climate change-induced productivity and disturbance changes jointly to capture the full range of climate change impacts on forests and to plan adaptation measures.

6.
Glob Chang Biol ; 23(12): 5092-5107, 2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-28580624

RESUMEN

Damage due to wind-storms and droughts is increasing in many temperate forests, yet little is known about the long-term roles of these key climatic factors in forest dynamics and in the carbon budget. The objective of this study was to estimate individual and coupled effects of droughts and wind-storms on adult tree mortality across a 31-year period in 115 managed, mixed coniferous forest stands from the Western Alps and the Jura mountains. For each stand, yearly mortality was inferred from management records, yearly drought from interpolated fields of monthly temperature, precipitation and soil water holding capacity, and wind-storms from interpolated fields of daily maximum wind speed. We performed a thorough model selection based on a leave-one-out cross-validation of the time series. We compared different critical wind speeds (CWSs) for damage, wind-storm, and stand variables and statistical models. We found that a model including stand characteristics, drought, and storm strength using a CWS of 25 ms-1 performed the best across most stands. Using this best model, we found that drought increased damage risk only in the most southerly forests, and its effect is generally maintained for up to 2 years. Storm strength increased damage risk in all forests in a relatively uniform way. In some stands, we found positive interaction between drought and storm strength most likely because drought weakens trees, and they became more prone to stem breakage under wind-loading. In other stands, we found negative interaction between drought and storm strength, where excessive rain likely leads to soil water saturation making trees more susceptible to overturning in a wind-storm. Our results stress that temporal data are essential to make valid inferences about ecological impacts of disturbance events, and that making inferences about disturbance agents separately can be of limited validity. Under projected future climatic conditions, the direction and strength of these ecological interactions could also change.


Asunto(s)
Sequías , Árboles , Viento , Bosques , Francia , Lluvia , Suelo , Suiza , Temperatura , Agua
7.
Plant Sci ; 245: 94-118, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26940495

RESUMEN

Land plants have adapted to survive under a range of wind climates and this involve changes in chemical composition, physical structure and morphology at all scales from the cell to the whole plant. Under strong winds plants can re-orientate themselves, reconfigure their canopies, or shed needles, leaves and branches in order to reduce the drag. If the wind is too strong the plants oscillate until the roots or stem fail. The mechanisms of root and stem failure are very similar in different plants although the exact details of the failure may be different. Cereals and other herbaceous crops can often recover after wind damage and even woody plants can partially recovery if there is sufficient access to water and nutrients. Wind damage can have major economic impacts on crops, forests and urban trees. This can be reduced by management that is sensitive to the local site and climatic conditions and accounts for the ability of plants to acclimate to their local wind climate. Wind is also a major disturbance in many plant ecosystems and can play a crucial role in plant regeneration and the change of successional stage.


Asunto(s)
Desarrollo de la Planta , Viento , Aclimatación/fisiología , Movimientos del Aire , Fenómenos Biomecánicos , Hojas de la Planta/fisiología
8.
Phys Rev E ; 94(6-2): 067001, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28085329

RESUMEN

Virot et al. [E. Virot et al., Phys. Rev. E 93, 023001 (2016)10.1103/PhysRevE.93.023001] assert that the critical wind speed at which ⩾50% of all trees in a population break is ≈42 m/s, regardless of tree characteristics. We show that empirical data do not support this assertion, and that the assumptions underlying the theory used by Virot et al. are inconsistent with the biomechanics of trees.

11.
Am J Bot ; 93(10): 1512-21, 2006 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21642098

RESUMEN

This paper reports on the effect of wind loading below damaging strength on tree mechanical and physical properties. In a wind-exposed Sitka spruce stand in western Scotland, 60 trees at four different levels of wind exposure (10 m, 30 m, 50 m, 90 m from edge) were characterized for stem and crown size and shape and mechanical properties, including structural Young's modulus (E(struct)), natural frequency, and damping ratio. E(struct) increased from the stand edge to the mid-forest, but with a large inter-tree variation. Swaying frequency and damping ratio of the trees also increased with distance from edge. Wind-exposed edge trees grew shorter, but more tapered with an overall lower E(struct), allowing for greater flexural stiffness at the stem base due to the larger diameter and for higher flexibility in the crown region of the stem. The trees at the middle of the stand compensated for their increased slenderness with a higher E(struct). Thus, for the different requirements for wind-firmness at stand edge and mid-forest, an adapted combination of tree form and mechanical properties allows the best withstanding of wind loads. The results show the requirement to understand the different strategies of trees to adapt to environmental constraints and the heterogeneity of their growth reactions in response to these strategies.

12.
Tree Physiol ; 24(11): 1239-50, 2004 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-15339733

RESUMEN

Secondary xylem of woody plants has a large volumetric proportion of gas occupying spaces that would otherwise be filled with water. We examined whether these gas-filled voids have a mechanical role by either decreasing the fresh mass the tree must support (by replacing some of the water with gas) or by providing inexpensive filler to increase stem diameter (thereby increasing the second moment of area at the expense of the modulus of elasticity and modulus of rupture). Calculations from published data show that temperate softwood species (n = 26) average 18 and 50% gas by volume for sapwood and heartwood, respectively; temperate hardwood species (n = 31) average 26% gas by volume in both the sapwood and heartwood; and tropical species (n = 52) with mixed sapwood and heartwood have 18% gas by volume. In this paper, we develop equations to show how gas affects the mechanical behavior of tree stems, and describe model results to show how gas affects mechanical stability, based on mass and stem diameters for six 34-year-old Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) trees. For the same applied load, modeled stems in which the gas space was filled with water differed in their surface stresses by < 2% from modeled stems in the native state (partially gas-filled), indicating no practical benefit from a reduction in stem mass due to gas. A second modeling scenario compared the native state to stems in which gas was removed and stem diameters decreased (and material properties adjusted to concur with the increased wood density) to conserve mass. Removal of the gas-filled voids resulted in up to 41% higher surface stress for the same applied load, caused by a decrease in the second moment of area greater than the increase in modulus of elasticity. Trees with gas removed had higher modulus of rupture, but could withstand up to 14% lower maximum wind forces than trees in their native state, suggesting a biomechanical role for the gas if the model assumptions are valid. The gas content may, however, have evolved in response to pressures unrelated to biomechanics. We discuss some of its potential effects on sapwood physiology.


Asunto(s)
Tallos de la Planta/fisiología , Árboles/fisiología , Fenómenos Biomecánicos , Gases/análisis , Modelos Biológicos , Tallos de la Planta/química , Pseudotsuga/fisiología , Árboles/química , Viento
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...