Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
bioRxiv ; 2024 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-38659891

RESUMEN

The pathogenesis of many rare tumor types is poorly understood, preventing the design of effective treatments. Solitary fibrous tumors (SFTs) are neoplasms of mesenchymal origin that affect 1/1,000,000 individuals every year and are clinically assimilated to soft tissue sarcomas. SFTs can arise throughout the body and are usually managed surgically. However, 30-40% of SFTs will relapse local-regionally or metastasize. There are no systemic therapies with durable activity for malignant SFTs to date. The molecular hallmark of SFTs is a gene fusion between the NAB2 and STAT6 loci on chromosome 12, resulting in a chimeric protein of poorly characterized function called NAB2-STAT6. We use primary samples and an inducible cell model to discover that NAB2-STAT6 operates as a transcriptional coactivator for a specific set of enhancers and promoters that are normally targeted by the EGR1 transcription factor. In physiological conditions, NAB2 is primarily localized to the cytoplasm and only a small nuclear fraction is available to operate as a co-activator of EGR1 targets. NAB2-STAT6 redirects NAB1, NAB2, and additional EGR1 to the nucleus and bolster the expression of neuronal EGR1 targets. The STAT6 moiety of the fusion protein is a major driver of its nuclear localization and further contributes to NAB2's co-activating abilities. In primary tumors, NAB2-STAT6 activates a neuroendocrine gene signature that sets it apart from most sarcomas. These discoveries provide new insight into the pathogenesis of SFTs and reveal new targets with therapeutic potential.

2.
Mol Cell ; 83(17): 3064-3079.e5, 2023 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-37552993

RESUMEN

CTCF is a critical regulator of genome architecture and gene expression that binds thousands of sites on chromatin. CTCF genomic localization is controlled by the recognition of a DNA sequence motif and regulated by DNA modifications. However, CTCF does not bind to all its potential sites in all cell types, raising the question of whether the underlying chromatin structure can regulate CTCF occupancy. Here, we report that R-loops facilitate CTCF binding through the formation of associated G-quadruplex (G4) structures. R-loops and G4s co-localize with CTCF at many genomic regions in mouse embryonic stem cells and promote CTCF binding to its cognate DNA motif in vitro. R-loop attenuation reduces CTCF binding in vivo. Deletion of a specific G4-forming motif in a gene reduces CTCF binding and alters gene expression. Conversely, chemical stabilization of G4s results in CTCF gains and accompanying alterations in chromatin organization, suggesting a pivotal role for G4 structures in reinforcing long-range genome interactions through CTCF.


Asunto(s)
G-Cuádruplex , Animales , Ratones , Estructuras R-Loop , Factor de Unión a CCCTC/metabolismo , Cromatina/genética , Genómica , Sitios de Unión
3.
Cell Rep ; 42(3): 112244, 2023 03 28.
Artículo en Inglés | MEDLINE | ID: mdl-36920904

RESUMEN

RNA polymerase II (RNAPII) controls expression of all protein-coding genes and most noncoding loci in higher eukaryotes. Calibrating RNAPII activity requires an assortment of polymerase-associated factors that are recruited at sites of active transcription. The Integrator complex is one of the most elusive transcriptional regulators in metazoans, deemed to be recruited after initiation to help establish and modulate paused RNAPII. Integrator is known to be composed of 14 subunits that assemble and operate in a modular fashion. We employed proteomics and machine-learning structure prediction (AlphaFold2) to identify an additional Integrator subunit, INTS15. We report that INTS15 assembles primarily with the INTS13/14/10 module and interfaces with the Int-PP2A module. Functional genomics analysis further reveals a role for INTS15 in modulating RNAPII pausing at a subset of genes. Our study shows that omics approaches combined with AlphaFold2-based predictions provide additional insights into the molecular architecture of large and dynamic multiprotein complexes.


Asunto(s)
ARN Polimerasa II , Transcripción Genética , ARN Polimerasa II/metabolismo
4.
Nat Rev Mol Cell Biol ; 24(3): 204-220, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36180603

RESUMEN

In higher eukaryotes, fine-tuned activation of protein-coding genes and many non-coding RNAs pivots around the regulated activity of RNA polymerase II (Pol II). The Integrator complex is the only Pol II-associated large multiprotein complex that is metazoan specific, and has therefore been understudied for years. Integrator comprises at least 14 subunits, which are grouped into distinct functional modules. The phosphodiesterase activity of the core catalytic module is co-transcriptionally directed against several RNA species, including long non-coding RNAs (lncRNAs), U small nuclear RNAs (U snRNAs), PIWI-interacting RNAs (piRNAs), enhancer RNAs and nascent pre-mRNAs. Processing of non-coding RNAs by Integrator is essential for their biogenesis, and at protein-coding genes, Integrator is a key modulator of Pol II promoter-proximal pausing and transcript elongation. Recent studies have identified an Integrator-specific serine/threonine-protein phosphatase 2A (PP2A) module, which targets Pol II and other components of the basal transcription machinery. In this Review, we discuss how the activity of Integrator regulates transcription, RNA processing, chromatin landscape and DNA repair. We also discuss the diverse roles of Integrator in development and tumorigenesis.


Asunto(s)
ARN Polimerasa II , Procesamiento Postranscripcional del ARN , Animales , ARN Polimerasa II/metabolismo , ARN , ARN Nuclear Pequeño/genética , ARN Nuclear Pequeño/metabolismo , Genómica , Transcripción Genética
5.
Cancer Discov ; 12(11): 2684-2709, 2022 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-36053276

RESUMEN

The chromatin reader eleven-nineteen leukemia (ENL) has been identified as a critical dependency in acute myeloid leukemia (AML), but its therapeutic potential remains unclear. We describe a potent and orally bioavailable small-molecule inhibitor of ENL, TDI-11055, which displaces ENL from chromatin by blocking its YEATS domain interaction with acylated histones. Cell lines and primary patient samples carrying MLL rearrangements or NPM1 mutations are responsive to TDI-11055. A CRISPR-Cas9-mediated mutagenesis screen uncovers an ENL mutation that confers resistance to TDI-11055, validating the compound's on-target activity. TDI-11055 treatment rapidly decreases chromatin occupancy of ENL-associated complexes and impairs transcription elongation, leading to suppression of key oncogenic gene expression programs and induction of differentiation. In vivo treatment with TDI-11055 blocks disease progression in cell line- and patient-derived xenograft models of MLL-rearranged and NPM1-mutated AML. Our results establish ENL displacement from chromatin as a promising epigenetic therapy for molecularly defined AML subsets and support the clinical translation of this approach. SIGNIFICANCE: AML is a poor-prognosis disease for which new therapeutic approaches are desperately needed. We developed an orally bioavailable inhibitor of ENL, demonstrated its potent efficacy in MLL-rearranged and NPM1-mutated AML, and determined its mechanisms of action. These biological and chemical insights will facilitate both basic research and clinical translation. This article is highlighted in the In This Issue feature, p. 2483.


Asunto(s)
Leucemia Mieloide Aguda , Lisina , Humanos , Leucemia Mieloide Aguda/genética , Histonas/metabolismo , Cromatina , Proteína de la Leucemia Mieloide-Linfoide/metabolismo
6.
Cancer Res ; 82(3): 458-471, 2022 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-34903608

RESUMEN

Despite treatment with intensive chemotherapy, acute myelogenous leukemia (AML) remains an aggressive malignancy with a dismal outcome in most patients. We found that AML cells exhibit an unusually rapid accumulation of the repressive histone mark H3K27me3 on nascent DNA. In cell lines, primary cells and xenograft mouse models, inhibition of the H3K27 histone methyltransferase EZH2 to decondense the H3K27me3-marked chromatin of AML cells enhanced chromatin accessibility and chemotherapy-induced DNA damage, apoptosis, and leukemia suppression. These effects were further promoted when chromatin decondensation of AML cells was induced upon S-phase entry after release from a transient G1 arrest mediated by CDK4/6 inhibition. In the p53-null KG-1 and THP-1 AML cell lines, EZH2 inhibitor and doxorubicin cotreatment induced transcriptional reprogramming that was, in part, dependent on derepression of H3K27me3-marked gene promoters and led to increased expression of cell death-promoting and growth-inhibitory genes.In conclusion, decondensing H3K27me3-marked chromatin by EZH2 inhibition represents a promising approach to improve the efficacy of DNA-damaging cytotoxic agents in patients with AML. This strategy might allow for a lowering of chemotherapy doses, with a consequent reduction of treatment-related side effects in elderly patients with AML or those with significant comorbidities. SIGNIFICANCE: Pharmacological inhibition of EZH2 renders DNA of AML cells more accessible to cytotoxic agents, facilitating leukemia suppression with reduced doses of chemotherapy.See related commentary by Adema and Colla, p. 359.


Asunto(s)
Cromatina/metabolismo , Histonas/metabolismo , Leucemia Mieloide Aguda/genética , Animales , Humanos , Ratones
7.
Life Sci Alliance ; 4(8)2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34187875

RESUMEN

The oncogenic role of common fragile sites (CFS), focal and pervasive gaps in the cancer genome arising from replicative stress, remains controversial. Exploiting the TCGA dataset, we found that in most CFS the genes residing within the associated focal deletions are down-regulated, including proteins involved in tumour immune recognition. In a subset of CFS, however, the residing genes are surprisingly overexpressed. Within the most frequent CFS in this group, FRA4F, which is deleted in up to 18% of cancer cases and harbours the CCSER1 gene, we identified a region which includes an intronic, antisense pseudogene, TMSB4XP8. TMSB4XP8 focal ablation or transcriptional silencing elicits the overexpression of CCSER1, through a cis-acting mechanism. CCSER1 overexpression increases proliferation and triggers centrosome amplifications, multinuclearity, and aberrant mitoses. Accordingly, FRA4F is associated in patient samples to mitotic genes deregulation and genomic instability. As a result, cells overexpressing CCSER1 become sensitive to the treatment with aurora kinase inhibitors. Our findings point to a novel tumourigenic mechanism where focal deletions increase the expression of a new class of "dormant" oncogenes.


Asunto(s)
Proteínas de Ciclo Celular/genética , Sitios Frágiles del Cromosoma , Eliminación de Gen , Regulación hacia Arriba , Línea Celular , Proliferación Celular , Regulación Neoplásica de la Expresión Génica , Inestabilidad Genómica , Células HEK293 , Células HeLa , Humanos , Mitosis , Seudogenes
8.
Cell ; 184(12): 3143-3162.e32, 2021 06 10.
Artículo en Inglés | MEDLINE | ID: mdl-34004147

RESUMEN

Gene expression by RNA polymerase II (RNAPII) is tightly controlled by cyclin-dependent kinases (CDKs) at discrete checkpoints during the transcription cycle. The pausing checkpoint following transcription initiation is primarily controlled by CDK9. We discovered that CDK9-mediated, RNAPII-driven transcription is functionally opposed by a protein phosphatase 2A (PP2A) complex that is recruited to transcription sites by the Integrator complex subunit INTS6. PP2A dynamically antagonizes phosphorylation of key CDK9 substrates including DSIF and RNAPII-CTD. Loss of INTS6 results in resistance to tumor cell death mediated by CDK9 inhibition, decreased turnover of CDK9 phospho-substrates, and amplification of acute oncogenic transcriptional responses. Pharmacological PP2A activation synergizes with CDK9 inhibition to kill both leukemic and solid tumor cells, providing therapeutic benefit in vivo. These data demonstrate that fine control of gene expression relies on the balance between kinase and phosphatase activity throughout the transcription cycle, a process dysregulated in cancer that can be exploited therapeutically.


Asunto(s)
Quinasa 9 Dependiente de la Ciclina/metabolismo , Terapia Molecular Dirigida , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Proteína Fosfatasa 2/metabolismo , Proteínas de Unión al ARN/metabolismo , Transcripción Genética , Proteínas Supresoras de Tumor/metabolismo , Animales , Línea Celular Tumoral , Quinasa 9 Dependiente de la Ciclina/antagonistas & inhibidores , Resistencia a Antineoplásicos/genética , Regulación Neoplásica de la Expresión Génica , Humanos , Ratones Endogámicos NOD , Fosforilación , Unión Proteica , ARN Polimerasa II/química , ARN Polimerasa II/metabolismo , Especificidad por Sustrato
9.
Sci Adv ; 7(3)2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33523892

RESUMEN

Monocytes and monocyte-derived macrophages originate through a multistep differentiation process. First, hematopoietic stem cells generate lineage-restricted progenitors that eventually develop into peripheral, postmitotic monocytes. Second, blood-circulating monocytes undergo differentiation into macrophages, which are specialized phagocytic cells capable of tissue infiltration. While monocytes mediate some level of inflammation and cell toxicity, macrophages boast the widest set of defense mechanisms against pathogens and elicit robust inflammatory responses. Here, we analyze the molecular determinants of monocytic and macrophagic commitment by profiling the EGR1 transcription factor. EGR1 is essential for monopoiesis and binds enhancers that regulate monocytic developmental genes such as CSF1R However, differentiating macrophages present a very different EGR1 binding pattern. We identify novel binding sites of EGR1 at a large set of inflammatory enhancers, even in the absence of its binding motif. We show that EGR1 repressive activity results in suppression of inflammatory genes and is mediated by the NuRD corepressor complex.


Asunto(s)
Macrófagos , Monocitos , Diferenciación Celular/genética , Proteína 1 de la Respuesta de Crecimiento Precoz/genética , Proteína 1 de la Respuesta de Crecimiento Precoz/metabolismo , Células Madre Hematopoyéticas , Humanos , Macrófagos/metabolismo , Monocitos/metabolismo
10.
Cell Rep ; 33(6): 108373, 2020 11 10.
Artículo en Inglés | MEDLINE | ID: mdl-33176136

RESUMEN

Genome-wide profiling of nascent RNA has become a fundamental tool to study transcription regulation. Unlike steady-state RNA-sequencing (RNA-seq), nascent RNA profiling mirrors real-time activity of RNA polymerases and provides an accurate readout of transcriptome-wide variations. Some species of nuclear RNAs (i.e., large intergenic noncoding RNAs [lincRNAs] and eRNAs) have a short half-life and can only be accurately gauged by nascent RNA techniques. Furthermore, nascent RNA-seq detects post-cleavage RNA at termination sites and promoter-associated antisense RNAs, providing insights into RNA polymerase II (RNAPII) dynamics and processivity. Here, we present a run-on assay with 4-thio ribonucleotide (4-S-UTP) labeling, followed by reversible biotinylation and affinity purification via streptavidin. Our protocol allows streamlined sample preparation within less than 3 days. We named the technique fastGRO (fast Global Run-On). We show that fastGRO is highly reproducible and yields a more complete and extensive coverage of nascent RNA than comparable techniques can. Importantly, we demonstrate that fastGRO is scalable and can be performed with as few as 0.5 × 106 cells.


Asunto(s)
Perfilación de la Expresión Génica/métodos , Análisis de Secuencia de ARN/métodos , Transcripción Genética/genética , Humanos
11.
Sci Adv ; 5(5): eaaw5294, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-31131328

RESUMEN

ARID1A, a subunit of the SWItch/Sucrose Non-Fermentable (SWI/SNF) chromatin-remodeling complex, localizes to both promoters and enhancers to influence transcription. However, the role of ARID1A in higher-order spatial chromosome partitioning and genome organization is unknown. Here, we show that ARID1A spatially partitions interphase chromosomes and regulates higher-order genome organization. The SWI/SNF complex interacts with condensin II, and they display significant colocalizations at enhancers. ARID1A knockout drives the redistribution of condensin II preferentially at enhancers, which positively correlates with changes in transcription. ARID1A and condensin II contribute to transcriptionally inactive B-compartment formation, while ARID1A weakens the border strength of topologically associated domains. Condensin II redistribution induced by ARID1A knockout positively correlates with chromosome sizes, which negatively correlates with interchromosomal interactions. ARID1A loss increases the trans interactions of small chromosomes, which was validated by three-dimensional interphase chromosome painting. These results demonstrate that ARID1A is important for large-scale genome folding and spatially partitions interphase chromosomes.


Asunto(s)
Cromosomas/ultraestructura , Proteínas de Unión al ADN/fisiología , Interfase/genética , Factores de Transcripción/fisiología , Adenosina Trifosfatasas/química , Sitios de Unión , Línea Celular Tumoral , Cromatina/química , Análisis por Conglomerados , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/genética , Elementos de Facilitación Genéticos , Perfilación de la Expresión Génica , Humanos , Complejos Multiproteicos/química , Regiones Promotoras Genéticas , Unión Proteica , RNA-Seq , Serina Endopeptidasas/química , Factores de Transcripción/genética
12.
Cancer Discov ; 9(3): 416-435, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30626590

RESUMEN

Pancreatic ductal adenocarcinoma (PDA) has a poor prognosis, and new strategies for prevention and treatment are urgently needed. We previously reported that histone H4 acetylation is elevated in pancreatic acinar cells harboring Kras mutations prior to the appearance of premalignant lesions. Because acetyl-CoA abundance regulates global histone acetylation, we hypothesized that altered acetyl-CoA metabolism might contribute to metabolic or epigenetic alterations that promote tumorigenesis. We found that acetyl-CoA abundance is elevated in KRAS-mutant acinar cells and that its use in the mevalonate pathway supports acinar-to-ductal metaplasia (ADM). Pancreas-specific loss of the acetyl-CoA-producing enzyme ATP-citrate lyase (ACLY) accordingly suppresses ADM and tumor formation. In PDA cells, growth factors promote AKT-ACLY signaling and histone acetylation, and both cell proliferation and tumor growth can be suppressed by concurrent BET inhibition and statin treatment. Thus, KRAS-driven metabolic alterations promote acinar cell plasticity and tumor development, and targeting acetyl-CoA-dependent processes exerts anticancer effects. SIGNIFICANCE: Pancreatic cancer is among the deadliest of human malignancies. We identify a key role for the metabolic enzyme ACLY, which produces acetyl-CoA, in pancreatic carcinogenesis. The data suggest that acetyl-CoA use for histone acetylation and in the mevalonate pathway facilitates cell plasticity and proliferation, suggesting potential to target these pathways.See related commentary by Halbrook et al., p. 326.This article is highlighted in the In This Issue feature, p. 305.


Asunto(s)
Acetilcoenzima A/metabolismo , Carcinoma Ductal Pancreático/metabolismo , Neoplasias Pancreáticas/metabolismo , Acetilación , Células Acinares/metabolismo , Células Acinares/patología , Animales , Carcinogénesis/genética , Carcinogénesis/metabolismo , Carcinogénesis/patología , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/patología , Proliferación Celular , Femenino , Genes ras , Xenoinjertos , Histonas/metabolismo , Humanos , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Mutación , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patología , Procesamiento Proteico-Postraduccional , Transducción de Señal
13.
Nat Commun ; 9(1): 4116, 2018 10 08.
Artículo en Inglés | MEDLINE | ID: mdl-30297712

RESUMEN

Inactivation of the subunits of SWI/SNF complex such as ARID1A is synthetically lethal with inhibition of EZH2 activity. However, mechanisms of de novo resistance to EZH2 inhibitors in cancers with inactivating SWI/SNF mutations are unknown. Here we show that the switch of the SWI/SNF catalytic subunits from SMARCA4 to SMARCA2 drives resistance to EZH2 inhibitors in ARID1A-mutated cells. SMARCA4 loss upregulates anti-apoptotic genes in the EZH2 inhibitor-resistant cells. EZH2 inhibitor-resistant ARID1A-mutated cells are hypersensitive to BCL2 inhibitors such as ABT263. ABT263 is sufficient to overcome resistance to an EZH2 inhibitor. In addition, ABT263 synergizes with an EZH2 inhibitor in vivo in ARID1A-inactivated ovarian tumor mouse models. Together, these data establish that the switch of the SWI/SNF catalytic subunits from SMARCA4 to SMARCA2 underlies the acquired resistance to EZH2 inhibitors. They suggest BCL2 inhibition alone or in combination with EZH2 inhibition represents urgently needed therapeutic strategy for ARID1A-mutated cancers.


Asunto(s)
Proteínas Cromosómicas no Histona/metabolismo , Resistencia a Antineoplásicos/efectos de los fármacos , Proteína Potenciadora del Homólogo Zeste 2/antagonistas & inhibidores , Indoles/farmacología , Proteínas Nucleares/metabolismo , Piridonas/farmacología , Factores de Transcripción/metabolismo , Compuestos de Anilina/administración & dosificación , Animales , Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Línea Celular Tumoral , Proteínas Cromosómicas no Histona/genética , ADN Helicasas/genética , ADN Helicasas/metabolismo , Proteínas de Unión al ADN , Resistencia a Antineoplásicos/genética , Proteína Potenciadora del Homólogo Zeste 2/genética , Proteína Potenciadora del Homólogo Zeste 2/metabolismo , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Indoles/administración & dosificación , Ratones Endogámicos NOD , Ratones Noqueados , Ratones SCID , Mutación , Proteínas Nucleares/genética , Neoplasias Ováricas/tratamiento farmacológico , Neoplasias Ováricas/genética , Neoplasias Ováricas/metabolismo , Piridonas/administración & dosificación , Sulfonamidas/administración & dosificación , Factores de Transcripción/genética , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de Xenoinjerto/métodos
14.
Mol Cell ; 71(1): 103-116.e7, 2018 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-30008316

RESUMEN

The control of cell fate is an epigenetic process initiated by transcription factors (TFs) that recognize DNA motifs and recruit activator complexes and transcriptional machineries to chromatin. Lineage specificity is thought to be provided solely by TF-motif pairing, while the recruited activators are passive. Here, we show that INTS13, a subunit of the Integrator complex, operates as monocytic/macrophagic differentiation factor. Integrator is a general activator of transcription at coding genes and is required for eRNA maturation. Here, we show that INTS13 functions as an independent sub-module and targets enhancers through Early Growth Response (EGR1/2) TFs and their co-factor NAB2. INTS13 binds poised monocytic enhancers eliciting chromatin looping and activation. Independent depletion of INTS13, EGR1, or NAB2 impairs monocytic differentiation of cell lines and primary human progenitors. Our data demonstrate that Integrator is not functionally homogeneous and has TF-specific regulatory potential, revealing a new enhancer regulatory axis that controls myeloid differentiation.


Asunto(s)
Diferenciación Celular , Proteína 1 de la Respuesta de Crecimiento Precoz/metabolismo , Proteína 2 de la Respuesta de Crecimiento Precoz/metabolismo , Elementos de Facilitación Genéticos , Monocitos/metabolismo , Células Progenitoras Mieloides/metabolismo , Proteínas Represoras/metabolismo , Línea Celular , Proteína 1 de la Respuesta de Crecimiento Precoz/genética , Proteína 2 de la Respuesta de Crecimiento Precoz/genética , Humanos , Células Progenitoras Mieloides/citología , Proteínas Represoras/genética
15.
Cell Rep ; 23(13): 3933-3945, 2018 06 26.
Artículo en Inglés | MEDLINE | ID: mdl-29949775

RESUMEN

AT-rich interactive domain-containing proteins 1A and 1B (ARID1A and ARID1B) are mutually exclusive subunits of the chromatin remodeler SWI/SNF. ARID1A is the most frequently mutated chromatin regulator across all cancers, and ovarian clear cell carcinoma (OCCC) carries the highest prevalence of ARID1A mutations (∼57%). Despite evidence implicating ARID1A in tumorigenesis, the mechanism remains elusive. Here, we demonstrate that ARID1A binds active regulatory elements in OCCC. Depletion of ARID1A represses RNA polymerase II (RNAPII) transcription but results in modest changes to accessibility. Specifically, pausing of RNAPII is severely impaired after loss of ARID1A. Compromised pausing results in transcriptional dysregulation of active genes, which is compensated by upregulation of ARID1B. However, a subset of ARID1A-dependent genes is not rescued by ARID1B, including many p53 and estrogen receptor (ESR1) targets. Our results provide insight into ARID1A-mediated tumorigenesis and unveil functions of SWI/SNF in modulating RNAPII dynamics.


Asunto(s)
Proteínas Nucleares/metabolismo , ARN Polimerasa II/metabolismo , Factores de Transcripción/metabolismo , Adenocarcinoma de Células Claras/metabolismo , Adenocarcinoma de Células Claras/patología , Línea Celular Tumoral , Proteínas de Unión al ADN , Elementos de Facilitación Genéticos , Receptor alfa de Estrógeno/metabolismo , Femenino , Humanos , Proteínas Nucleares/antagonistas & inhibidores , Proteínas Nucleares/genética , Neoplasias Ováricas/metabolismo , Neoplasias Ováricas/patología , Regiones Promotoras Genéticas , Interferencia de ARN , ARN Interferente Pequeño/metabolismo , Factores de Transcripción/antagonistas & inhibidores , Factores de Transcripción/genética , Transcripción Genética , Proteína p53 Supresora de Tumor/metabolismo , Regulación hacia Arriba
16.
Methods Mol Biol ; 1468: 111-20, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-27662873

RESUMEN

Transcription occurring at gene loci results in accumulation of mature RNA molecules (i.e., mRNAs) that can be easily assayed by RT-PCR or RNA sequencing. However, the steady-state level of RNA does not accurately mirror transcriptional activity per se. In fact, RNA stability plays a major role in determining the relative abundance of any given RNA molecule. Here, I describe a protocol of Nuclear Run-On assay coupled to deep sequencing to assess real-time transcription from engaged RNA polymerase. Mapping nascent transcripts at the genome-wide scale provides a reliable measure of transcriptional activity in mammalian cells and delivers a high-resolution map of coding and noncoding transcripts that is especially useful for annotation and quantification of short-lived RNA molecules.


Asunto(s)
Secuenciación de Nucleótidos de Alto Rendimiento/métodos , ARN/genética , Análisis de Secuencia de ARN/métodos , Animales , Mapeo Cromosómico , ARN Polimerasas Dirigidas por ADN/metabolismo , Humanos , ARN/química , Estabilidad del ARN , ARN Largo no Codificante/química , ARN Largo no Codificante/genética , Sitio de Iniciación de la Transcripción , Transcripción Genética
17.
Cancer Res ; 76(21): 6320-6330, 2016 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-27803105

RESUMEN

The emergence of tumor cells with certain stem-like characteristics, such as high aldehyde dehydrogenase (ALDH) activity due to ALDH1A1 expression, contributes to chemotherapy resistance and tumor relapse. However, clinically applicable inhibitors of ALDH activity have not been reported. There is evidence to suggest that epigenetic regulation of stem-related genes contributes to chemotherapy efficacy. Here, we show that bromodomain and extraterminal (BET) inhibitors suppress ALDH activity by abrogating BRD4-mediated ALDH1A1 expression through a super-enhancer element and its associated enhancer RNA. The clinically applicable small-molecule BET inhibitor JQ1 suppressed the outgrowth of cisplatin-treated ovarian cancer cells both in vitro and in vivo Combination of JQ1 and cisplatin improved the survival of ovarian cancer-bearing mice in an orthotopic model. These phenotypes correlate with inhibition of ALDH1A1 expression through a super-enhancer element and other stem-related genes in promoter regions bound by BRD4. Thus, targeting the BET protein BRD4 using clinically applicable small-molecule inhibitors, such as JQ1, is a promising strategy for targeting ALDH activity in epithelial ovarian cancer. Cancer Res; 76(21); 6320-30. ©2016 AACR.


Asunto(s)
Aldehído Deshidrogenasa/antagonistas & inhibidores , Azepinas/farmacología , Neoplasias Glandulares y Epiteliales/tratamiento farmacológico , Proteínas Nucleares/antagonistas & inhibidores , Neoplasias Ováricas/tratamiento farmacológico , Factores de Transcripción/antagonistas & inhibidores , Triazoles/farmacología , Aldehído Deshidrogenasa/genética , Familia de Aldehído Deshidrogenasa 1 , Animales , Carcinoma Epitelial de Ovario , Proteínas de Ciclo Celular , Línea Celular Tumoral , Cisplatino/farmacología , Femenino , Humanos , Ratones , Neoplasias Glandulares y Epiteliales/enzimología , Proteínas Nucleares/fisiología , Neoplasias Ováricas/enzimología , Retinal-Deshidrogenasa , Factores de Transcripción/fisiología
18.
Cell ; 162(5): 1003-15, 2015 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-26279188

RESUMEN

The control of promoter-proximal pausing and the release of RNA polymerase II (Pol II) is a widely used mechanism for regulating gene expression in metazoans, especially for genes that respond to environmental and developmental cues. Here, we identify that Pol-II-associated factor 1 (PAF1) possesses an evolutionarily conserved function in metazoans in the regulation of promoter-proximal pausing. Reduction in PAF1 levels leads to an increased release of paused Pol II into gene bodies at thousands of genes. PAF1 depletion results in increased nascent and mature transcripts and increased levels of phosphorylation of Pol II's C-terminal domain on serine 2 (Ser2P). These changes can be explained by the recruitment of the Ser2P kinase super elongation complex (SEC) effecting increased release of paused Pol II into productive elongation, thus establishing PAF1 as a regulator of promoter-proximal pausing by Pol II.


Asunto(s)
Proteínas Nucleares/metabolismo , Regiones Promotoras Genéticas , ARN Polimerasa II/metabolismo , Transcripción Genética , Animales , Proteínas de Drosophila/metabolismo , Drosophila melanogaster , Histonas/metabolismo , Humanos , Fosforilación , Interferencia de ARN , Factores de Transcripción , Ubiquitinación
19.
Nature ; 525(7569): 399-403, 2015 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-26308897

RESUMEN

Integrator is a multi-subunit complex stably associated with the carboxy-terminal domain (CTD) of RNA polymerase II (RNAPII). Integrator is endowed with a core catalytic RNA endonuclease activity, which is required for the 3'-end processing of non-polyadenylated, RNAPII-dependent, uridylate-rich, small nuclear RNA genes. Here we examine the requirement of Integrator in the biogenesis of transcripts derived from distal regulatory elements (enhancers) involved in tissue- and temporal-specific regulation of gene expression in metazoans. Integrator is recruited to enhancers and super-enhancers in a stimulus-dependent manner. Functional depletion of Integrator subunits diminishes the signal-dependent induction of enhancer RNAs (eRNAs) and abrogates stimulus-induced enhancer-promoter chromatin looping. Global nuclear run-on and RNAPII profiling reveals a role for Integrator in 3'-end cleavage of eRNA primary transcripts leading to transcriptional termination. In the absence of Integrator, eRNAs remain bound to RNAPII and their primary transcripts accumulate. Notably, the induction of eRNAs and gene expression responsiveness requires the catalytic activity of Integrator complex. We propose a role for Integrator in biogenesis of eRNAs and enhancer function in metazoans.


Asunto(s)
Elementos de Facilitación Genéticos/genética , Regulación de la Expresión Génica , Complejos Multiproteicos/metabolismo , Proteínas Nucleares/metabolismo , ARN Polimerasa II/metabolismo , ARN Largo no Codificante/biosíntesis , ARN Largo no Codificante/genética , Biocatálisis , Cromatina/genética , Cromatina/metabolismo , Regulación de la Expresión Génica/genética , Células HeLa , Humanos , Complejos Multiproteicos/química , Proteínas Nucleares/química , Proteínas Nucleares/deficiencia , Regiones Promotoras Genéticas/genética , Subunidades de Proteína/química , Subunidades de Proteína/deficiencia , Subunidades de Proteína/metabolismo , ARN Polimerasa II/química , Procesamiento Postranscripcional del ARN , ARN Largo no Codificante/metabolismo , Iniciación de la Transcripción Genética , Terminación de la Transcripción Genética
20.
FEBS J ; 282(9): 1647-57, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25303371

RESUMEN

Over the past few years, the field of noncoding RNAs has grown from a niche for geneticists into a prominent domain of mainstream biology. Advances in genomic technologies have provided a more comprehensive view of the mammalian genome, improving our knowledge of regions of the genome devoid of protein-coding potential. A large body of evidence supports the proposal that noncoding RNAs account for a large proportion of the transcriptional output of any given cell and tissue type. This review will delve into the biogenesis and function of long noncoding RNAs. We will discuss our current understanding of these molecules as major chromatin players, and explore future directions in the field.


Asunto(s)
ARN Largo no Codificante/genética , Animales , Evolución Molecular , Genómica , Activación Transcripcional
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...