Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Neurotrauma ; 34(2): 263-272, 2017 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-27256113

RESUMEN

Traumatic brain injury (TBI) is a leading cause of death and disability in people younger than 45 and is a significant public health concern. In addition to primary mechanical damage to cells and tissue, TBI involves additional molecular mechanisms of injury, termed secondary injury, that continue to evolve over hours, days, weeks, and beyond. The trajectory of recovery after TBI is highly unpredictable and in many cases results in chronic cognitive and behavioral changes. Acutely after TBI, there is an unregulated release of glutamate that cannot be buffered or cleared effectively, resulting in damaging levels of glutamate in the extracellular space. This initial loss of glutamate homeostasis may initiate additional changes in glutamate regulation. The excitatory amino acid transporters (EAATs) are expressed on both neurons and glia and are the principal mechanism for maintaining extracellular glutamate levels. Diffusion of glutamate outside the synapse due to impaired uptake may lead to increased extrasynaptic glutamate signaling, secondary injury through activation of cell death pathways, and loss of fidelity and specificity of synaptic transmission. Coordination of glutamate release and uptake is critical to regulating synaptic strength, long-term potentiation and depression, and cognitive processes. In this review, we will discuss dysregulation of extracellular glutamate and glutamate uptake in the acute stage of TBI and how failure to resolve acute disruptions in glutamate homeostatic mechanisms may play a causal role in chronic cognitive symptoms after TBI.


Asunto(s)
Lesiones Traumáticas del Encéfalo/metabolismo , Modelos Animales de Enfermedad , Ácido Glutámico/metabolismo , Transmisión Sináptica/fisiología , Animales , Lesiones Traumáticas del Encéfalo/psicología , Proteínas de Transporte de Glutamato en la Membrana Plasmática/metabolismo , Humanos , Ratones , Neuroglía/metabolismo , Ratas , Roedores , Transducción de Señal/fisiología , Sinapsis/metabolismo
2.
Proc Natl Acad Sci U S A ; 107(34): 15081-6, 2010 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-20696891

RESUMEN

Estrogen receptor alpha (ERalpha) plays an important role in the onset and progression of breast cancer, whereas p53 functions as a major tumor suppressor. We previously reported that ERalpha binds to p53, resulting in inhibition of transcriptional regulation by p53. Here, we report on the molecular mechanisms by which ERalpha suppresses p53's transactivation function. Sequential ChIP assays demonstrated that ERalpha represses p53-mediated transcriptional activation in human breast cancer cells by recruiting nuclear receptor corepressors (NCoR and SMRT) and histone deacetylase 1 (HDAC1). RNAi-mediated down-regulation of NCoR resulted in increased endogenous expression of the cyclin-dependent kinase (CDK)-inhibitor p21(Waf1/Cip1) (CDKN1A) gene, a prototypic transcriptional target of p53. While 17beta-estradiol (E2) enhanced ERalpha binding to p53 and inhibited p21 transcription, antiestrogens decreased ERalpha recruitment and induced transcription. The effects of estrogen and antiestrogens on p21 transcription were diametrically opposite to their known effects on the conventional ERE-containing ERalpha target gene, pS2/TFF1. These results suggest that ERalpha uses dual strategies to promote abnormal cellular proliferation: enhancing the transcription of ERE-containing proproliferative genes and repressing the transcription of p53-responsive antiproliferative genes. Importantly, ERalpha binds to p53 and inhibits transcriptional activation by p53 in stem/progenitor cell-containing murine mammospheres, suggesting a potential role for the ER-p53 interaction in mammary tissue homeostasis and cancer formation. Furthermore, retrospective studies analyzing response to tamoxifen therapy in a subset of patients with ER-positive breast cancer expressing either wild-type or mutant p53 suggest that the presence of wild-type p53 is an important determinant of positive therapeutic response.


Asunto(s)
Neoplasias de la Mama/metabolismo , Receptor alfa de Estrógeno/metabolismo , Proteína p53 Supresora de Tumor/antagonistas & inhibidores , Animales , Secuencia de Bases , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Línea Celular Tumoral , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/genética , Cartilla de ADN/genética , Estradiol/farmacología , Moduladores de los Receptores de Estrógeno/farmacología , Femenino , Genes p53 , Histona Desacetilasa 1/metabolismo , Humanos , Ratones , Ratones Endogámicos C57BL , Modelos Biológicos , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Mutación , Células Madre Neoplásicas/metabolismo , Regiones Promotoras Genéticas , Tamoxifeno/farmacología , Activación Transcripcional , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo
3.
J Virol ; 81(15): 8303-14, 2007 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-17507474

RESUMEN

Paramyxoviruses utilize both an attachment protein and a fusion (F) protein to drive virus-cell and cell-cell fusion. F exists functionally as a trimer of two disulfide-linked subunits: F(1) and F(2). Alignment and analysis of a set of paramyxovirus F protein sequences identified three conserved blocks (CB): one in the fusion peptide/heptad repeat A domain, known to play important roles in fusion promotion, one in the region between the heptad repeats of F(1) (CBF(1)) (A. E. Gardner, K. L. Martin, and R. E. Dutch, Biochemistry 46:5094-5105, 2007), and one in the F(2) subunit (CBF(2)). To analyze the functions of CBF(2), alanine substitutions at conserved positions were created in both the simian virus 5 (SV5) and Hendra virus F proteins. A number of the CBF(2) mutations resulted in folding and expression defects. However, the CBF(2) mutants that were properly expressed and trafficked had altered fusion promotion activity. The Hendra virus CBF(2) Y79A and P89A mutants showed significantly decreased levels of fusion, whereas the SV5 CBF(2) I49A mutant exhibited greatly increased cell-cell fusion relative to that for wild-type F. Additional substitutions at SV5 F I49 suggest that both side chain volume and hydrophobicity at this position are important in the folding of the metastable, prefusion state and the subsequent triggering of membrane fusion. The recently published prefusogenic structure of parainfluenza virus 5/SV5 F (H. S. Yin et al., Nature 439:38-44, 2006) places CBF(2) in direct contact with heptad repeat A. Our data therefore indicate that this conserved region plays a critical role in stabilizing the prefusion state, likely through interactions with heptad repeat A, and in triggering membrane fusion.


Asunto(s)
Subunidades de Proteína/química , Subunidades de Proteína/metabolismo , Proteínas Virales de Fusión/química , Proteínas Virales de Fusión/metabolismo , Internalización del Virus , Secuencia de Aminoácidos , Animales , Línea Celular , Humanos , Fusión de Membrana/fisiología , Modelos Moleculares , Datos de Secuencia Molecular , Mutación , Pliegue de Proteína , Estructura Cuaternaria de Proteína , Subunidades de Proteína/genética , Alineación de Secuencia , Proteínas Virales de Fusión/genética
4.
Biochemistry ; 46(17): 5094-105, 2007 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-17417875

RESUMEN

Paramyxoviruses are a diverse family that utilizes a fusion (F) protein to enter cells via fusion of the viral lipid bilayer with a target cell membrane. Although certain regions of the F protein are known to play critical roles in membrane fusion, the function of much of the protein remains unclear. Sequence alignment of a set of paramyxovirus F proteins and analysis utilizing Block Maker identified a region of conserved amino acid sequence in a large domain between the heptad repeats of F1, designated CBF1. We employed site-directed mutagenesis to analyze the function of completely conserved residues of CBF1 in both the simian virus 5 (SV5) and Hendra virus F proteins. The majority of CBF1 point mutants were deficient in homotrimer formation, proteolytic processing, and transport to the cell surface. For some SV5 F mutants, proteolytic cleavage and surface expression could be restored by expression at 30 degrees C, and varying levels of fusion promotion were observed at this temperature. In addition, the mutant SV5 F V402A displayed a hyperfusogenic phenotype at both 30 and 37 degrees C, indicating that this mutation allows for efficient fusion with only an extremely small amount of cleaved, active protein. The recently published prefusogenic structure of PIV5/SV5 F (Yin, H. S., et al. (2006) Nature 439, 38-44) indicates that residues within and flanking CBF1 interact with the fusion peptide domain. Together, these data suggest that CBF1-fusion peptide interactions are critical for the initial folding of paramyxovirus F proteins from this important viral family and can also modulate subsequent membrane fusion promotion.


Asunto(s)
Pliegue de Proteína , Proteínas Virales de Fusión/química , Secuencia de Aminoácidos , Animales , Línea Celular , Secuencia Conservada , Citometría de Flujo , Humanos , Modelos Moleculares , Datos de Secuencia Molecular , Mutación Puntual , Homología de Secuencia de Aminoácido
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...