Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
2.
Ecol Appl ; 33(1): e2745, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36107138

RESUMEN

Estimating habitat and spatial associations for wildlife is common across ecological studies and it is well known that individual traits can drive population dynamics and vice versa. Thus, it is commonly assumed that individual- and population-level data should represent the same underlying processes, but few studies have directly compared contemporaneous data representing these different perspectives. We evaluated the circumstances under which data collected from Lagrangian (individual-level) and Eulerian (population-level) perspectives could yield comparable inference to understand how scalable information is from the individual to the population. We used Global Positioning System (GPS) collar (Lagrangian) and camera trap (Eulerian) data for seven species collected simultaneously in eastern Washington (2018-2020) to compare inferences made from different survey perspectives. We fit the respective data streams to resource selection functions (RSFs) and occupancy models and compared estimated habitat- and space-use patterns for each species. Although previous studies have considered whether individual- and population-level data generated comparable information, ours is the first to make this comparison for multiple species simultaneously and to specifically ask whether inferences from the two perspectives differed depending on the focal species. We found general agreement between the predicted spatial distributions for most paired analyses, although specific habitat relationships differed. We hypothesize the discrepancies arose due to differences in statistical power associated with camera and GPS-collar sampling, as well as spatial mismatches in the data. Our research suggests data collected from individual-based sampling methods can capture coarse population-wide patterns for a diversity of species, but results differ when interpreting specific wildlife-habitat relationships.


Asunto(s)
Animales Salvajes , Ecosistema , Animales , Sistemas de Información Geográfica , Encuestas y Cuestionarios , Telemetría
3.
Ecology ; 103(10): e3771, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35638187

RESUMEN

Over the last decade, spatial capture-recapture (SCR) models have become widespread for estimating demographic parameters in ecological studies. However, the underlying assumptions about animal movement and space use are often not realistic. This is a missed opportunity because interesting ecological questions related to animal space use, habitat selection, and behavior cannot be addressed with most SCR models, despite the fact that the data collected in SCR studies - individual animals observed at specific locations and times - can provide a rich source of information about these processes and how they relate to demographic rates. We developed SCR models that integrated more complex movement processes that are typically inferred from telemetry data, including a simple random walk, correlated random walk (i.e., short-term directional persistence), and habitat-driven Langevin diffusion. We demonstrated how to formulate, simulate from, and fit these models with standard SCR data using data-augmented Bayesian analysis methods. We evaluated their performance through a simulation study, in which we varied the detection, movement, and resource selection parameters. We also examined different numbers of sampling occasions and assessed performance gains when including auxiliary location data collected from telemetered individuals. Across all scenarios, the integrated SCR movement models performed well in terms of abundance, detection, and movement parameter estimation. We found little difference in bias for the simple random walk model when reducing the number of sampling occasions from T = 25 to T = 15. We found some bias in movement parameter estimates under several of the correlated random walk scenarios, but incorporating auxiliary location data improved parameter estimates and significantly improved mixing during model fitting. The Langevin movement model was able to recover resource selection parameters from standard SCR data, which is particularly appealing because it explicitly links the individual-level movement process with habitat selection and population density. We focused on closed population models, but the movement models developed here can be extended to open SCR models. The movement process models could also be easily extended to accommodate additional "building blocks" of random walks, such as central tendency (e.g., territoriality) or multiple movement behavior states, thereby providing a flexible and coherent framework for linking animal movement behavior to population dynamics, density, and distribution.


Asunto(s)
Ecosistema , Movimiento , Animales , Teorema de Bayes , Simulación por Computador , Densidad de Población
4.
Ecology ; 103(10): e3473, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-34270790

RESUMEN

Ecologists and conservation biologists increasingly rely on spatial capture-recapture (SCR) and movement modeling to study animal populations. Historically, SCR has focused on population-level processes (e.g., vital rates, abundance, density, and distribution), whereas animal movement modeling has focused on the behavior of individuals (e.g., activity budgets, resource selection, migration). Even though animal movement is clearly a driver of population-level patterns and dynamics, technical and conceptual developments to date have not forged a firm link between the two fields. Instead, movement modeling has typically focused on the individual level without providing a coherent scaling from individual- to population-level processes, whereas SCR has typically focused on the population level while greatly simplifying the movement processes that give rise to the observations underlying these models. In our view, the integration of SCR and animal movement modeling has tremendous potential for allowing ecologists to scale up from individuals to populations and advancing the types of inferences that can be made at the intersection of population, movement, and landscape ecology. Properly accounting for complex animal movement processes can also potentially reduce bias in estimators of population-level parameters, thereby improving inferences that are critical for species conservation and management. This introductory article to the Special Feature reviews recent advances in SCR and animal movement modeling, establishes a common notation, highlights potential advantages of linking individual-level (Lagrangian) movements to population-level (Eulerian) processes, and outlines a general conceptual framework for the integration of movement and SCR models. We then identify important avenues for future research, including key challenges and potential pitfalls in the developments and applications that lie ahead.


Asunto(s)
Ecología , Movimiento , Animales , Densidad de Población
5.
Ecology ; 103(10): e3576, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-34714927

RESUMEN

Group living in species can have complex consequences for individuals, populations, and ecosystems. Therefore, estimating group density and size is often essential for understanding population dynamics, interspecific interactions, and conservation needs of group-living species. Spatial capture-recapture (SCR) has been used to model both individual and group density in group-living species, but modeling either individual-level or group-level detection results in different biases due to common characteristics of group-living species, such as highly cohesive movement or variation in group size. Furthermore, no SCR method currently estimates group density, individual density, and group size jointly. Using clustered point processes, we developed a cluster SCR model to estimate group density, individual density, and group size. We compared the model to standard SCR models using both a simulation study and a data set of detections of African wild dogs (Lycaon pictus), a group-living carnivore, on camera traps in northern Botswana. We then tested the model's performance under various scenarios of group movement in a separate simulation study. We found that the cluster SCR model outperformed a standard group-level SCR model when fitted to data generated with varying group sizes, and mostly recovered previous estimates of wild dog group density, individual density, and group size. We also found that the cluster SCR model performs better as individuals' movements become more correlated with their groups' movements. The cluster SCR model offers opportunities to investigate ecological hypotheses relating group size to population dynamics while accounting for cohesive movement behaviors in group-living species.


Asunto(s)
Ecosistema , Simulación por Computador , Densidad de Población , Dinámica Poblacional
6.
Ecol Evol ; 8(20): 10336-10344, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-30397470

RESUMEN

With continued global changes, such as climate change, biodiversity loss, and habitat fragmentation, the need for assessment of long-term population dynamics and population monitoring of threatened species is growing. One powerful way to estimate population size and dynamics is through capture-recapture methods. Spatial capture (SCR) models for open populations make efficient use of capture-recapture data, while being robust to design changes. Relatively few studies have implemented open SCR models, and to date, very few have explored potential issues in defining these models. We develop a series of simulation studies to examine the effects of the state-space definition and between-primary-period movement models on demographic parameter estimation. We demonstrate the implications on a 10-year camera-trap study of tigers in India. The results of our simulation study show that movement biases survival estimates in open SCR models when little is known about between-primary-period movements of animals. The size of the state-space delineation can also bias the estimates of survival in certain cases.We found that both the state-space definition and the between-primary-period movement specification affected survival estimates in the analysis of the tiger dataset (posterior mean estimates of survival ranged from 0.71 to 0.89). In general, we suggest that open SCR models can provide an efficient and flexible framework for long-term monitoring of populations; however, in many cases, realistic modeling of between-primary-period movements is crucial for unbiased estimates of survival and density.

7.
Ecol Evol ; 8(8): 4042-4052, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-29721278

RESUMEN

The Lower Keys marsh rabbit (Sylvilagus palustris hefneri) is one of many endangered endemic species of the Florida Keys. The main threats are habitat loss and fragmentation from sea-level rise, development, and habitat succession. Exotic predators such as free-ranging domestic cats (Felis catus) pose an additional threat to these endangered small mammals. Management strategies have focused on habitat restoration and exotic predator control. However, the effectiveness of predator removal and the effects of anthropogenic habitat modifications and restoration have not been evaluated. Between 2013 and 2015, we used camera traps to survey marsh rabbits and free-ranging cats at 84 sites in the National Key Deer Refuge, Big Pine Key, Florida, USA. We used dynamic occupancy models to determine factors associated with marsh rabbit occurrence, colonization, extinction, and the co-occurrence of marsh rabbits and cats during a period of predator removal. Rabbit occurrence was positively related to freshwater habitat and patch size, but was negatively related to the number of individual cats detected at each site. Furthermore, marsh rabbit colonization was negatively associated with relative increases in the number of individual cats at each site between survey years. Cat occurrence was negatively associated with increasing distance from human developments. The probability of cat site extinction was positively related to a 2-year trapping effort, indicating that predator removal reduced the cat population. Dynamic co-occurrence models suggested that cats and marsh rabbits co-occur less frequently than expected under random conditions, whereas co-detections were site and survey-specific. Rabbit site extinction and colonization were not strongly conditional on cat presence, but corresponded with a negative association. Our results suggest that while rabbits can colonize and persist at sites where cats occur, it is the number of individual cats at a site that more strongly influences rabbit occupancy and colonization. These findings indicate that continued predator management would likely benefit endangered small mammals as they recolonize restored habitats.

8.
Sci Rep ; 8(1): 4173, 2018 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-29520029

RESUMEN

Camera traps and radiotags commonly are used to estimate animal activity curves. However, little empirical evidence has been provided to validate whether they produce similar results. We compared activity curves from two common camera trapping techniques to those from radiotags with four species that varied substantially in size (~1 kg-~50 kg), diet (herbivore, omnivore, carnivore), and mode of activity (diurnal and crepuscular). Also, we sub-sampled photographs of each species with each camera trapping technique to determine the minimum sample size needed to maintain accuracy and precision of estimates. Camera trapping estimated greater activity during feeding times than radiotags in all but the carnivore, likely reflective of the close proximity of foods readily consumed by all species except the carnivore (i.e., corn bait or acorns). However, additional analyses still indicated both camera trapping methods produced relatively high overlap and correlation to radiotags. Regardless of species or camera trapping method, mean overlap increased and overlap error decreased rapidly as sample sizes increased until an asymptote near 100 detections which we therefore recommend as a minimum sample size. Researchers should acknowledge that camera traps and radiotags may estimate the same mode of activity but differ in their estimation of magnitude in activity peaks.


Asunto(s)
Animales Salvajes/fisiología , Modelos Biológicos , Animales , Conservación de los Recursos Naturales , Densidad de Población , Tamaño de la Muestra
9.
Ecology ; 98(3): 840-850, 2017 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-28027588

RESUMEN

The last decade has seen a dramatic increase in the use of species distribution models (SDMs) to characterize patterns of species' occurrence and abundance. Efforts to parameterize SDMs often create a tension between the quality and quantity of data available to fit models. Estimation methods that integrate both standardized and non-standardized data types offer a potential solution to the tradeoff between data quality and quantity. Recently several authors have developed approaches for jointly modeling two sources of data (one of high quality and one of lesser quality). We extend their work by allowing for explicit spatial autocorrelation in occurrence and detection error using a Multivariate Conditional Autoregressive (MVCAR) model and develop three models that share information in a less direct manner resulting in more robust performance when the auxiliary data is of lesser quality. We describe these three new approaches ("Shared," "Correlation," "Covariates") for combining data sources and show their use in a case study of the Brown-headed Nuthatch in the Southeastern U.S. and through simulations. All three of the approaches which used the second data source improved out-of-sample predictions relative to a single data source ("Single"). When information in the second data source is of high quality, the Shared model performs the best, but the Correlation and Covariates model also perform well. When the information quality in the second data source is of lesser quality, the Correlation and Covariates model performed better suggesting they are robust alternatives when little is known about auxiliary data collected opportunistically or through citizen scientists. Methods that allow for both data types to be used will maximize the useful information available for estimating species distributions.


Asunto(s)
Modelos Teóricos , Análisis Espacial , Ecología , Almacenamiento y Recuperación de la Información
10.
PLoS One ; 11(12): e0167829, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-28030559

RESUMEN

Changes in land cover during urbanization profoundly affect the diversity of bird communities, but the demographic mechanisms affecting diversity are poorly known. We advance such understanding by documenting how urbanization influences breeding dispersal-the annual movement of territorial adults-of six songbird species in the Seattle, WA, USA metropolitan area. We color-banded adults and mapped the centers of their annual breeding activities from 2000-2010 to obtain 504 consecutive movements by 337 adults. By comparing movements, annual reproduction, and mate fidelity among 10 developed, 5 reserved, and 11 changing (areas cleared and developed during our study) landscapes, we determined that adaptive breeding dispersal of sensitive forest species (Swainson's Thrush and Pacific wren), which involves shifting territory and mate after reproductive failure, was constrained by development. In changing lands, sensitive forest specialists dispersed from active development to nearby forested areas, but in so doing suffered low annual reproduction. Species tolerant of suburban lands (song sparrow, spotted towhee, dark-eyed junco, and Bewick's wren) dispersed adaptively in changing landscapes. Site fidelity ranged from 0% (Pacific wren in changing landscape) to 83% (Bewick's wren in forest reserve). Mate fidelity ranged from 25% (dark-eyed junco) to 100% (Bewick's wren). Variation in fidelity to mate and territory was consistent with theories positing an influence of territory quality, asynchronous return from migration, prior productivity, and reproductive benefits of retaining a familiar territory. Costly breeding dispersal, as well as reduced reproductive success and lowered survival cause some birds to decline in the face of urbanization. In contrast, the ability of species that utilize edges and early successional habitats to breed successfully, disperse to improve reproductive success after failure, and survive throughout the urban ecosystem enables them to maintain or increase population size.


Asunto(s)
Distribución Animal , Aves/fisiología , Cruzamiento , Ciudades , Ecosistema , Conducta Sexual Animal , Animales , Femenino , Masculino
11.
Ecol Appl ; 26(6): 1797-1815, 2016 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-27755708

RESUMEN

Proposed offshore wind energy development on the Atlantic Outer Continental Shelf has brought attention to the need for baseline studies of the distribution and abundance of marine birds. We compiled line transect data from 15 shipboard surveys (June 2012-April 2014), along with associated remotely sensed habitat data, in the lower Mid-Atlantic Bight off the coast of Delaware, Maryland, and Virginia, USA. We implemented a recently developed hierarchical community distance sampling model to estimate the seasonal abundance of 40 observed marine bird species. Treating each season separately, we included six oceanographic parameters to estimate seabird abundance: three static (distance to shore, slope, sediment grain size) and three dynamic covariates (sea surface temperature [SST], salinity, primary productivity). We expected that avian bottom-feeders would respond primarily to static covariates that characterize seafloor variability, and that surface-feeders would respond more to dynamic covariates that quantify surface productivity. We compared the variation in species-specific and community-level responses to these habitat features, including for rare species, and we predicted species abundance across the study area. While several protected species used the study area in summer during their breeding season, estimated abundance and observed diversity were highest for nonbreeding species in winter. Distance to shore was the most common significant predictor of abundance, and thus useful in estimating the potential exposure of marine birds to offshore development. In many cases, our expectations based on feeding ecology were confirmed, such as in the first winter season, when bottom-feeders associated significantly with the three static covariates (distance to shore, slope, and sediment grain size), and surface-feeders associated significantly with two dynamic covariates (SST, primary productivity). However, other cases revealed significant relationships between static covariates and surface-feeders (e.g., distance to shore) and between dynamic covariates and bottom-feeders (e.g., primary productivity during that same winter). More generally, we found wide interannual, seasonal, and interspecies variation in habitat relationships with abundance. These results show the importance of quantifying detection and determining the ecological drivers of a community's distribution and abundance, within and among species, for evaluating the potential exposure of marine birds to offshore development.


Asunto(s)
Distribución Animal , Charadriiformes/fisiología , Conservación de los Recursos Naturales , Animales , Modelos Biológicos , Densidad de Población
12.
Ecology ; 96(2): 325-31, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26240853

RESUMEN

Modeling population dynamics while accounting for imperfect detection is essential to monitoring programs. Distance sampling allows estimating population size while accounting for imperfect detection, but existing methods do not allow for estimation of demographic parameters. We develop a model that uses temporal correlation in abundance arising from underlying population dynamics to estimate demographic parameters from repeated distance sampling surveys. Using a simulation study motivated by designing a monitoring program for Island Scrub-Jays (Aphelocoma insularis), we investigated the power of this model to detect population trends. We generated temporally autocorrelated abundance and distance sampling data over six surveys, using population rates of change of 0.95 and 0.90. We fit the data generating Markovian model and a mis-specified model with a log-linear time effect on abundance, and derived post hoc trend estimates from a model estimating abundance for each survey separately. We performed these analyses for varying numbers of survey points. Power to detect population changes was consistently greater under the Markov model than under the alternatives, particularly for reduced numbers of survey points. The model can readily be extended to more complex demographic processes than considered in our simulations. This novel framework can be widely adopted for wildlife population monitoring.


Asunto(s)
Aves/fisiología , Monitoreo del Ambiente/métodos , Modelos Biológicos , Animales , Simulación por Computador , Dinámica Poblacional , Tamaño de la Muestra
13.
PLoS One ; 10(6): e0129020, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26087321

RESUMEN

We conducted a survey of an endangered and cryptic forest grouse, the capercaillie Tetrao urogallus, based on droppings collected on two sampling occasions in eight forest fragments in central Switzerland in early spring 2009. We used genetic analyses to sex and individually identify birds. We estimated sex-dependent detection probabilities and population size using a modern spatial capture-recapture (SCR) model for the data from pooled surveys. A total of 127 capercaillie genotypes were identified (77 males, 46 females, and 4 of unknown sex). The SCR model yielded a total population size estimate (posterior mean) of 137.3 capercaillies (posterior sd 4.2, 95% CRI 130-147). The observed sex ratio was skewed towards males (0.63). The posterior mean of the sex ratio under the SCR model was 0.58 (posterior sd 0.02, 95% CRI 0.54-0.61), suggesting a male-biased sex ratio in our study area. A subsampling simulation study indicated that a reduced sampling effort representing 75% of the actual detections would still yield practically acceptable estimates of total size and sex ratio in our population. Hence, field work and financial effort could be reduced without compromising accuracy when the SCR model is used to estimate key population parameters of cryptic species.


Asunto(s)
Galliformes/genética , Genotipo , Modelos Teóricos , Animales , Femenino , Masculino , Densidad de Población , Suiza
14.
Proc Natl Acad Sci U S A ; 111(47): 16784-9, 2014 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-25385605

RESUMEN

Although ecological forces are known to shape the expression of sociality across a broad range of biological taxa, their role in shaping human behavior is currently disputed. Both comparative and experimental evidence indicate that beliefs in moralizing high gods promote cooperation among humans, a behavioral attribute known to correlate with environmental harshness in nonhuman animals. Here we combine fine-grained bioclimatic data with the latest statistical tools from ecology and the social sciences to evaluate the potential effects of environmental forces, language history, and culture on the global distribution of belief in moralizing high gods (n = 583 societies). After simultaneously accounting for potential nonindependence among societies because of shared ancestry and cultural diffusion, we find that these beliefs are more prevalent among societies that inhabit poorer environments and are more prone to ecological duress. In addition, we find that these beliefs are more likely in politically complex societies that recognize rights to movable property. Overall, our multimodel inference approach predicts the global distribution of beliefs in moralizing high gods with an accuracy of 91%, and estimates the relative importance of different potential mechanisms by which this spatial pattern may have arisen. The emerging picture is neither one of pure cultural transmission nor of simple ecological determinism, but rather a complex mixture of social, cultural, and environmental influences. Our methods and findings provide a blueprint for how the increasing wealth of ecological, linguistic, and historical data can be leveraged to understand the forces that have shaped the behavior of our own species.


Asunto(s)
Ecología , Religión , Humanos
15.
PLoS One ; 9(10): e111257, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25350557

RESUMEN

Spatial capture-recapture (SCR) models have advanced our ability to estimate population density for wide ranging animals by explicitly incorporating individual movement. Though these models are more robust to various spatial sampling designs, few studies have empirically tested different large-scale trap configurations using SCR models. We investigated how extent of trap coverage and trap spacing affects precision and accuracy of SCR parameters, implementing models using the R package secr. We tested two trapping scenarios, one spatially extensive and one intensive, using black bear (Ursus americanus) DNA data from hair snare arrays in south-central Missouri, USA. We also examined the influence that adding a second, lower barbed-wire strand to snares had on quantity and spatial distribution of detections. We simulated trapping data to test bias in density estimates of each configuration under a range of density and detection parameter values. Field data showed that using multiple arrays with intensive snare coverage produced more detections of more individuals than extensive coverage. Consequently, density and detection parameters were more precise for the intensive design. Density was estimated as 1.7 bears per 100 km2 and was 5.5 times greater than that under extensive sampling. Abundance was 279 (95% CI = 193-406) bears in the 16,812 km2 study area. Excluding detections from the lower strand resulted in the loss of 35 detections, 14 unique bears, and the largest recorded movement between snares. All simulations showed low bias for density under both configurations. Results demonstrated that in low density populations with non-uniform distribution of population density, optimizing the tradeoff among snare spacing, coverage, and sample size is of critical importance to estimating parameters with high precision and accuracy. With limited resources, allocating available traps to multiple arrays with intensive trap spacing increased the amount of information needed to inform parameters with high precision.


Asunto(s)
Ursidae/fisiología , Animales , Simulación por Computador , ADN/química , Femenino , Genética de Población , Genotipo , Geografía , Cabello , Funciones de Verosimilitud , Masculino , Repeticiones de Microsatélite , Missouri , Densidad de Población , Dinámica Poblacional
16.
Conserv Biol ; 28(4): 1034-44, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24628427

RESUMEN

Forest degradation is arguably the greatest threat to biodiversity, ecosystem services, and rural livelihoods. Therefore, increasing understanding of how organisms respond to degradation is essential for management and conservation planning. We were motivated by the need for rapid and practical analytical tools to assess the influence of management and degradation on biodiversity and system state in areas subject to rapid environmental change. We compared bird community composition and size in managed (ejido, i.e., communally owned lands) and unmanaged (national park) forests in the Sierra Tarahumara region, Mexico, using multispecies occupancy models and data from a 2-year breeding bird survey. Unmanaged sites had on average higher species occupancy and richness than managed sites. Most species were present in low numbers as indicated by lower values of detection and occupancy associated with logging-induced degradation. Less than 10% of species had occupancy probabilities >0.5, and degradation had no positive effects on occupancy. The estimated metacommunity size of 125 exceeded previous estimates for the region, and sites with mature trees and uneven-aged forest stand characteristics contained the highest species richness. Higher estimation uncertainty and decreases in richness and occupancy for all species, including habitat generalists, were associated with degraded young, even-aged stands. Our findings show that multispecies occupancy methods provide tractable measures of biodiversity and system state and valuable decision support for landholders and managers. These techniques can be used to rapidly address gaps in biodiversity information, threats to biodiversity, and vulnerabilities of species of interest on a landscape level, even in degraded or fast-changing environments. Moreover, such tools may be particularly relevant in the assessment of species richness and distribution in a wide array of habitats.


Asunto(s)
Aves/fisiología , Conservación de los Recursos Naturales , Animales , Teorema de Bayes , Biodiversidad , Agricultura Forestal , México , Modelos Teóricos , Densidad de Población , Dinámica Poblacional
17.
PLoS One ; 9(3): e91683, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24670971

RESUMEN

The explosion of the Deepwater Horizon drilling platform created the largest marine oil spill in U.S. history. As part of the Natural Resource Damage Assessment process, we applied an innovative modeling approach to obtain upper estimates for occupancy and for number of manatees in areas potentially affected by the oil spill. Our data consisted of aerial survey counts in waters of the Florida Panhandle, Alabama and Mississippi. Our method, which uses a Bayesian approach, allows for the propagation of uncertainty associated with estimates from empirical data and from the published literature. We illustrate that it is possible to derive estimates of occupancy rate and upper estimates of the number of manatees present at the time of sampling, even when no manatees were observed in our sampled plots during surveys. We estimated that fewer than 2.4% of potentially affected manatee habitat in our Florida study area may have been occupied by manatees. The upper estimate for the number of manatees present in potentially impacted areas (within our study area) was estimated with our model to be 74 (95%CI 46 to 107). This upper estimate for the number of manatees was conditioned on the upper 95%CI value of the occupancy rate. In other words, based on our estimates, it is highly probable that there were 107 or fewer manatees in our study area during the time of our surveys. Because our analyses apply to habitats considered likely manatee habitats, our inference is restricted to these sites and to the time frame of our surveys. Given that manatees may be hard to see during aerial surveys, it was important to account for imperfect detection. The approach that we described can be useful for determining the best allocation of resources for monitoring and conservation.


Asunto(s)
Ecosistema , Monitoreo del Ambiente , Contaminación por Petróleo , Trichechus/fisiología , Alabama , Animales , Florida , Geografía , Mississippi , Encuestas y Cuestionarios
18.
Ecology ; 94(3): 553-9, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23687880

RESUMEN

Abundance and population density are fundamental pieces of information for population ecology and species conservation, but they are difficult to estimate for rare and elusive species. Mark--resight models are popular for estimating population abundance because they are less invasive and expensive than traditional mark-recapture. However, density estimation using mark-resight is difficult because the area sampled must be explicitly defined, historically using ad hoc approaches. We developed a spatial mark--resight model for estimating population density that combines spatial resighting data and telemetry data. Incorporating telemetry data allows us to inform model parameters related to movement and individual location. Our model also allows <100% individual identification of marked individuals. We implemented the model in a Bayesian framework, using a custom-made Metropolis-within-Gibbs Markov chain Monte Carlo algorithm. As an example, we applied this model to a mark--resight study of raccoons (Procyon lotor) on South Core Banks, a barrier island in Cape Lookout National Seashore, North Carolina, USA. We estimated a population of 186.71 +/- 14.81 individuals, which translated to a density of 8.29 +/- 0.66 individuals/km2 (mean +/- SD). The model presented here will have widespread utility in future applications, especially for species that are not naturally marked.


Asunto(s)
Sistemas de Identificación Animal , Modelos Biológicos , Mapaches/fisiología , Telemetría/veterinaria , Animales , Teorema de Bayes , Dinámica Poblacional
19.
PLoS One ; 8(2): e55097, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23393564

RESUMEN

Understanding interactions between mobile species distributions and landcover characteristics remains an outstanding challenge in ecology. Multiple factors could explain species distributions including endogenous evolutionary traits leading to conspecific clustering and endogenous habitat features that support life history requirements. Birds are a useful taxon for examining hypotheses about the relative importance of these factors among species in a community. We developed a hierarchical Bayes approach to model the relationships between bird species occupancy and local landcover variables accounting for spatial autocorrelation, species similarities, and partial observability. We fit alternative occupancy models to detections of 90 bird species observed during repeat visits to 316 point-counts forming a 400-m grid throughout the Patuxent Wildlife Research Refuge in Maryland, USA. Models with landcover variables performed significantly better than our autologistic and null models, supporting the hypothesis that local landcover heterogeneity is important as an exogenous driver for species distributions. Conspecific clustering alone was a comparatively poor descriptor of local community composition, but there was evidence for spatial autocorrelation in all species. Considerable uncertainty remains whether landcover combined with spatial autocorrelation is most parsimonious for describing bird species distributions at a local scale. Spatial structuring may be weaker at intermediate scales within which dispersal is less frequent, information flows are localized, and landcover types become spatially diversified and therefore exhibit little aggregation. Examining such hypotheses across species assemblages contributes to our understanding of community-level associations with conspecifics and landscape composition.


Asunto(s)
Aves , Animales , Ecología , Ecosistema , Dinámica Poblacional , Análisis Espacial
20.
PLoS One ; 7(6): e38882, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22761712

RESUMEN

Unmanned aerial vehicles (UAV), or drones, have been used widely in military applications, but more recently civilian applications have emerged (e.g., wildlife population monitoring, traffic monitoring, law enforcement, oil and gas pipeline threat detection). UAV can have several advantages over manned aircraft for wildlife surveys, including reduced ecological footprint, increased safety, and the ability to collect high-resolution geo-referenced imagery that can document the presence of species without the use of a human observer. We illustrate how geo-referenced data collected with UAV technology in combination with recently developed statistical models can improve our ability to estimate the distribution of organisms. To demonstrate the efficacy of this methodology, we conducted an experiment in which tennis balls were used as surrogates of organisms to be surveyed. We used a UAV to collect images of an experimental field with a known number of tennis balls, each of which had a certain probability of being hidden. We then applied spatially explicit occupancy models to estimate the number of balls and created precise distribution maps. We conducted three consecutive surveys over the experimental field and estimated the total number of balls to be 328 (95%CI: 312, 348). The true number was 329 balls, but simple counts based on the UAV pictures would have led to a total maximum count of 284. The distribution of the balls in the field followed a simulated environmental gradient. We also were able to accurately estimate the relationship between the gradient and the distribution of balls. Our experiment demonstrates how this technology can be used to create precise distribution maps in which discrete regions of the study area are assigned a probability of presence of an object. Finally, we discuss the applicability and relevance of this experimental study to the case study of Florida manatee distribution at power plants.


Asunto(s)
Aeronaves , Reconocimiento de Normas Patrones Automatizadas , Equipo Deportivo , Tenis , Trichechus , Animales , Simulación por Computador , Ambiente , Humanos , Modelos Estadísticos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...