Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
G3 (Bethesda) ; 12(6)2022 05 30.
Artículo en Inglés | MEDLINE | ID: mdl-35348690

RESUMEN

The bacteriophage T7 expression system is one of the most prominent transcription systems used in biotechnology and molecular-level research. However, T7 RNA polymerase is prone to read-through transcription due to its high processivity. As a consequence, enforcing efficient transcriptional termination is difficult. The termination hairpin found natively in the T7 genome is adapted to be inefficient, exhibiting 62% termination efficiency in vivo and even lower efficiency in vitro. In this study, we engineered a series of sequences that outperform the efficiency of the native terminator hairpin. By embedding a previously discovered 8-nucleotide T7 polymerase pause sequence within a synthetic hairpin sequence, we observed in vivo termination efficiency of 91%; by joining 2 short sequences into a tandem 2-hairpin structure, termination efficiency was increased to 98% in vivo and 91% in vitro. This study also tests the ability of these engineered sequences to terminate transcription of the Escherichia coli RNA polymerase. Two out of 3 of the most successful T7 polymerase terminators also facilitated termination of the bacterial polymerase with around 99% efficiency.


Asunto(s)
ARN Polimerasas Dirigidas por ADN , Transcripción Genética , Bacteriófago T7/genética , Bacteriófago T7/metabolismo , ARN Polimerasas Dirigidas por ADN/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas Virales/genética , Proteínas Virales/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA