Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Toxicol Mech Methods ; 34(4): 385-397, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38083807

RESUMEN

Polymeric poly (lactic-co-glycolic acid) (PLGA)-lipid hybrid nanoparticles (PNPs)-based therapy are powerful carriers for various therapeutic agents. This study was conducted to evaluate the chemotherapeutic potential of free 5-flurouracil (5FU) and synthetized 5FU-PNPs and impact on p53-dependent apoptosis in mammary carcinomas (MCs) grown in mice. Breast cancer cells were injected in Swiss albino female mice and 2 bilateral masses of MC were confirmed after one week. Mice were distributed to five experimental groups; Group 1: MC control group. Groups 2 and 3: MC + free 5FU [5 or 10 mg per kg] groups. Groups 4 and 5: synthetized MC+ 5FU-PNPs [5 or 10 mg per kg] groups. Medications were administered orally, twice weekly for 3 weeks. Then, tumors were dissected, and sections were stained with hematoxylin-eosin (HE) while the other MC was used for measuring of cell death and inflammatory markers. Treatment with 5FU-PNPs suppressed the MC masses and pathologic scores based on HE-staining. Similarly, greater proapoptotic activity was recorded in 5FU-PNPs groups compared to free 5FU groups as shown by significant upregulation in tumoral p53 immunostaining. The current results encourage the utility of PNPs for improving the antitumor effect of 5FU. The chemotherapeutic potential was mediated through enhancement of tumoral p53-mediated p53 up-regulated modulator of apoptosis (PUMA) genes. Additional studies are warranted for testing the antitumor activity of this preparation in other mouse models of breast cancer.

2.
Polymers (Basel) ; 15(13)2023 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-37447489

RESUMEN

Ribociclib is a newly approved orally administered drug for breast cancer. This study aimed to prepare, characterize, and evaluate hybrid lipid-polymer nanoparticles (PLNs) of ribociclib to enhance its in vitro dissolution rate, pharmacokinetics, and anticancer efficacy. Ribociclib-loaded PLNs were prepared by solvent evaporation using the Box-Behnken design to optimize formulation variables. Particle size, entrapment efficiency, differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), Fourier transform infrared spectroscopy (FTIR), atomic force microscopy (AFM), in vitro release cytotoxicity, molecular modeling, and pharmacokinetic studies were examined. The ribociclib-loaded PLN (formula 1, F1) was optimized in terms of particle size (266.9 ± 4.61 nm) and encapsulation efficiency (59.1 ± 2.57 mg/mL). DSC and thermogravimetric characterization showed the absence of a crystalline structure in the prepared PLNs, confirmed by FTIR, and showed no interactions between the components and the drug. AFM showed well-dispersed heterogeneously shaped nanoparticles. The in vitro release profile exhibited significant results for the optimized formula, reaching 100% at 600 and 90 min at pH 6.8 and 1.2, respectively. The low IC50 obtained by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay suggests that optimized PLN might serve as an effective delivery vehicle for cancer treatment, especially breast and lung cancer. Molecular modeling revealed several hydrogen bonds. A pharmacokinetic study in rats showed that the ribociclib formula had a 6.5-fold increase in maximum concentration (Cmax) and a 5.6-fold increase in area under the curve (AUC). Regarding the everted intestinal sac absorption, formula 1 increased ribociclib penetration relative to the physical combination and pure medication. In conclusion, optimized PLNs with enhanced physicochemical and cytotoxic properties and improved pharmacokinetic parameters were successfully prepared.

3.
Colloids Surf B Biointerfaces ; 227: 113361, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37236085

RESUMEN

Despite significant advances in oral drug delivery technologies, many drugs are prone to limited oral bioavailability due to biological barriers that hinder drug absorption. Pro-nanolipospheres (PNL) are a form of delivery system that can potentiate the oral bioavailability of poorly water-soluble drugs through a variety of processes, including increased drug solubility and protecting them from degradation by intestinal or hepatic first-pass metabolism. In this study, pro-nanolipospheres were employed as a delivery vehicle for improving the oral bioavailability of the lipophilic statin, atorvastatin (ATR). Various ATR-loaded PNL formulations, composed of various pharmaceutical ingredients, were prepared by the pre-concentrate method and characterized by determining particle size, surface charge, and encapsulation efficiency. An optimized formula (ATR-PT PNL) showing the smallest particle size, highest zeta potential, and highest encapsulation efficiency was selected for further in vivo investigations. The in vivo pharmacodynamic experiments demonstrated that the optimized ATR-PT PNL formulation exerted a potent hypolipidemic effect in a Poloxamer® 407-induced hyper-lipidaemia rat model by restoring normal cholesterol and triglyceride serum levels along with alleviating serum levels of LDL while elevating serum HDL levels, compared to pure drug suspensions and marketed ATR (Lipitor®). Most importantly, oral administration of the optimized ATR-PT PNL formulation showed a dramatic increase in ATR oral bioavailability, as evinced by a 1.7- and 3.6-fold rise in systemic bioavailability when compared with oral commercial ATR suspensions (Lipitor®) and pure drug suspension, respectively. Collectively, pro-nanolipospheres might represent a promising delivery vehicle for enhancing the oral bioavailability of poorly water-soluble drugs.


Asunto(s)
Sistemas de Liberación de Medicamentos , Excipientes , Ratas , Animales , Atorvastatina/farmacología , Disponibilidad Biológica , Suspensiones , Ratas Wistar , Sistemas de Liberación de Medicamentos/métodos , Administración Oral , Solubilidad , Agua , Tamaño de la Partícula
4.
Nanomaterials (Basel) ; 12(5)2022 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-35269343

RESUMEN

Nanotherapeutics can enhance the characteristics of drugs, such as rapid systemic clearance and systemic toxicities. Polymeric nanoparticles (PRNPs) depend on dispersion of a drug in an amorphous state in a polymer matrix. PRNPs are capable of delivering drugs and improving their safety. The primary goal of this study is to formulate doxycycline-loaded PRNPs by applying the nanoprecipitation method. Eudragit S100 (ES100) (for DOX-PRNP1) and hydroxypropyl methyl cellulose phthalate HP55 (for DOX-PRNP2) were tested as the drug carrying polymers and the DOX-PRNP2 showed better characteristics and drug release % and was hence selected to be tested in the biological study. Six different experimental groups were formed from sixty male albino mice. 1,2,-Dimethylhydrazine was used for 16 weeks to induce experimental colon cancer. We compared the oral administration of DOX-PRNP2 in doses of 5 and 10 mg/kg with the free drug. Results indicated that DOX-PRNP2 had greater antitumor activity, as evidenced by an improved histopathological picture for colon specimens as well as a decrease in the tumor scores. In addition, when compared to free DOX, the DOX-PRNP2 reduced the angiogenic indicators VEGD and CD31 to a greater extent. Collectively, the findings demonstrated that formulating DOX in PRNPs was useful in enhancing antitumor activity and can be used in other models of cancers to verify their efficacy and compatibility with our study.

5.
Drug Des Devel Ther ; 15: 3071-3093, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34305395

RESUMEN

PURPOSE: This research aimed to improve water solubility and oral bioavailability of a newly synthesized thienopyrimidine derivative (TPD) with anti-pancreatic cancer activity by loading on starch nanoparticles (SNPs). METHODS: TPD was synthesized, purified and its ADME behavior was predicted using Swiss ADME software. A UV spectroscopy method was developed and validated to measure TPD concentration at various dosage forms. SNPs loaded with TPD (SNPs-TPD) were prepared, characterized for particle size, polydispersity index, zeta potential, transmission electron microscopy, Fourier transform infrared spectroscopy (FT-IR), differential scanning calorimetry (DSC), entrapment efficiency, in-vitro release, and in-vivo animal study. RESULTS: The Swiss ADME results showed that TPD can be administered orally; however, it has low oral bioavailability (0.55) and poor water solubility. The significant regression coefficient of the calibration curve (r2 = 0.9995), the precision (%RSD < 0.5%) and the accuracy (99.46-101.72%) confirmed the efficacy of the developed UV method. SNPs-TPD had a spherical monodispersed (PDI= 0.12) shape, nanoparticle size (22.98 ± 4.23) and good stability (-21 ± 4.72 mV). Moreover, FT-IR and DSC revealed changes in the physicochemical structure of starch resulting in SNPs formation. The entrapment efficiency was 97% ± 0.45%, and the in-vitro release showed that the SNPs enhanced the solubility of the TPD. The in-vivo animal study and histopathology showed that SNPs enhanced the oral bioavailability of TPD against solid Ehrlich carcinoma. CONCLUSION: SNPs-TPD were superior in drug solubility and oral bioavailability than those obtained from TPD suspension.


Asunto(s)
Antineoplásicos/química , Nanopartículas/química , Neoplasias Pancreáticas/tratamiento farmacológico , Pirimidinas/química , Almidón/química , Animales , Antineoplásicos/farmacocinética , Disponibilidad Biológica , Liberación de Fármacos , Femenino , Ratones , Pirimidinas/síntesis química , Pirimidinas/farmacocinética , Solubilidad
6.
Ther Deliv ; 12(5): 363-374, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33849297

RESUMEN

Objectives: The aim of this study was to design and formulate mixed polymer-lipid nanoparticles (PLNs) for the delivery of ibuprofen. Methods: The mixed PLNs were prepared by a single modified emulsification solvent evaporation method. Key findings: Core-shell-shaped mixed PLNs were successfully prepared, with sizes in the nano range (193.3 ± 0.70 to 795.8 ± 0.70 nm) and ζ potential (-26.8 ± 0.45 to -42.8 ± 0.30 mV). Entrapment efficiency ranged from 80.3 to 93.6%. Conclusions: Pharmacokinetic parameters showed great improvement in Cmax and Tmax of ibuprofen from the formulation PLNs8 compared with the respective Brufen® and pure drugs, indicating improvement in bioavailability of the drug.


Asunto(s)
Ibuprofeno , Nanopartículas , Disponibilidad Biológica , Portadores de Fármacos , Ácido Láctico , Lípidos , Tamaño de la Partícula , Polímeros
7.
Biomolecules ; 11(1)2021 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-33467560

RESUMEN

The use of 5-fluorouracil (5FU) is associated with multifaceted challenges and poor pharmacokinetics. Poly(lactic-co-glycolic acid)-lipid hybrid nanoparticles (PLNs)-based therapy has received attention as efficient carriers for a diversity of drugs. This study evaluated the in vivo chemotherapeutic and anti-proliferative efficacy of 5FU-loaded PLNs against 1,2-dimethylhydrazine (Di-MH) prompted colon dysplasia in mice compared to free 5FU. 5FU PLNs were prepared. Male Swiss albino mice were distributed to six experimental groups. Group 1: Saline group. All the other groups were injected weekly with Di-MH [20 mg/kg, s.c.]. Group 2: Di-MH induced colon dysplasia control group. Groups 3 and 4: Di-MH + free 5FU treated group [2.5 and 5 mg/kg]. Groups 5 and 6: Di-MH + 5FU-PLNs treated group [2.5 and 5 mg/kg]. Free 5FU and 5FU-PLNs doses were administered orally, twice weekly. Treatment with 5FU-PLNs induced a higher cytoprotective effect compared to free 5FU as indicated by lower mucosal histopathologic score and reduction in number of Ki-67 immunpositive proliferating nuclei. Additionally, there was significant upregulation of p53 and caspase 3 genes in colon specimens. Our results support the validity of utilizing the PLNs technique to improve the chemopreventive action of 5FU in treating colon cancer.


Asunto(s)
Quimioprevención , Fluorouracilo/farmacología , Lecitinas/química , Nanopartículas/química , Copolímero de Ácido Poliláctico-Ácido Poliglicólico/química , Polímeros/química , Animales , Apoptosis , Colon/efectos de los fármacos , Colon/patología , Modelos Animales de Enfermedad , Liberación de Fármacos , Antígeno Ki-67/metabolismo , Lípidos/química , Masculino , Ratones , Tamaño de la Partícula , ARN Mensajero/genética , ARN Mensajero/metabolismo , Electricidad Estática , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo
8.
Molecules ; 25(14)2020 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-32679837

RESUMEN

OBJECTIVES: The aim of this study was to prepare doxycycline polymeric nanoparticles (DOXY-PNPs) with hope to enhance its chemotherapeutic potential against solid Ehrlich carcinoma (SEC). METHODS: Three DOXY-PNPs were formulated by nanoprecipitation method using hydroxypropyl methyl cellulose (HPMC) as a polymer. The prepared DOXY-PNPs were evaluated for the encapsulation efficiency (EE%), the drug loading capacity, particle size, zeta potential (ZP) and the in-vitro release for selection of the best formulation. PNP number 3 was selected for further biological testing based on the best pharmaceutical characters. PNP3 (5 and 10 mg/kg) was evaluated for the antitumor potential against SEC grown in female mice by measuring the tumor mass as well as the expression and immunohistochemical staining for the apoptosis markers; caspase 3 and BAX. RESULTS: The biological study documented the greatest reduction in tumor mass in mice treated with PNP3. Importantly, treatment with 5 mg/kg of DOXY-PNPs produced a similar chemotherapeutic effect to that produced by 10 mg/kg of free DOXY. Further, a significant elevation in mRNA expression and immunostaining for caspase 3 and BAX was detected in mice group treated with DOXY-PNPs. CONCLUSIONS: The DOXY-PNPs showed greater antitumor potential against SEC grown in mice and greater values for Spearman's correlation coefficients were detected when correlation with tumor mass or apoptosis markers was examined; this is in comparison to free DOXY. Hence, DOXY-PNPs should be tested in other tumor types to further determine the utility of the current technique in preparing chemotherapeutic agents and enhancing their properties.


Asunto(s)
Antineoplásicos/síntesis química , Antineoplásicos/farmacología , Doxiciclina/síntesis química , Doxiciclina/farmacología , Nanopartículas/química , Polímeros/química , Animales , Antineoplásicos/química , Caspasa 3/metabolismo , Doxiciclina/química , Portadores de Fármacos , Sistemas de Liberación de Medicamentos , Femenino , Inmunohistoquímica , Ratones , Nanopartículas/ultraestructura , Tamaño de la Partícula , Relación Estructura-Actividad
9.
Chem Biol Interact ; 295: 52-63, 2018 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-29678497

RESUMEN

Recently, nanotechnology has received great attention in war against cancer. The present study investigated the antitumor efficacy of molecularly imprinted nanopreparation of 5-fluorouracil (nano-5-FU) against Ehrlich ascites carcinoma (EAC) solid tumors grown in mice. Tumor cells were transplanted into female albino mice. Mice were allocated into 5 groups; Group 1: control EAC bearing mice. Groups 2&3: EAC-bearing mice treated orally with 5-FU (5 and 10 mg/kg) twice weekly. Groups 4&5: EAC bearing mice treated with nano-5-FU (5 and 10 mg/kg) twice weekly. Treatment with nano-5-FU showed higher antitumor effect compared to free 5-FU as indicated by enhanced apoptosis and reduction in tumor weight. Additionally, lower number of mitotic figures and greater area for necrosis were observed in the tumor specimens alongside with a decline in the number of intratumoral proliferating nuclei in comparison to free 5-FU. Furthermore, the results showed a significant down-regulation in tumoral expression of caspase-3 and vascular endothelial growth factor. Together, these results further support the potential of using nanotechnology to enhance anticancer efficacy of 5-FU.


Asunto(s)
Antineoplásicos/farmacología , Carcinoma de Ehrlich/tratamiento farmacológico , Fluorouracilo/farmacología , Impresión Molecular , Nanopartículas/química , Animales , Antineoplásicos/síntesis química , Antineoplásicos/química , Carcinoma de Ehrlich/patología , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Femenino , Fluorouracilo/síntesis química , Fluorouracilo/química , Ratones , Tamaño de la Partícula , Relación Estructura-Actividad
10.
Res Pharm Sci ; 12(5): 346-352, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28974972

RESUMEN

Ethanol injection is one of the techniques frequently used to produce liposomes which favors both simplicity and safety. In this process, an ethanolic solution of lipids is rapidly injected into an aqueous medium through a needle, dispersing the phospholipids throughout the medium and promoting the vesicle formation. Being a critical parameter that determines the fate of liposome and its distribution, we studied different factors affecting the particle size of liposomes including different phospholipid (Phosal® 53 MCT) and cholesterol concentrations and the use of different types of non-ionic surfactants at fixed Phosal® 53 MCT concentration of 50 mg per formulation. Both Phosal® 53 MCT and cholesterol concentration had direct effect on liposomes particle size. Non-ionic surfactants produced liposomes of smaller particle size when compared to conventional liposomes formed using Phosal® 53 MCT 300 mg per formulation only, whereas this effect was diminished when higher Phosal® 53 MCT to cholesterol ratios were used that obviously increased liposomes size. Smaller liposomes sizes were obtained upon using non-ionic surfactants of lower hydrophilic/hydrophobic balance (HLB) as both Tween 80 and Cremophor RH 40 produced liposomes of smaller particle size compared to Poloxamer 407. The smallest liposomes particle size was successfully obtained in the formulation comprising 300 mg Phosal® MCT, 150 mg cholesterol and 50 mg Tween 80.

11.
Pharmaceutics ; 8(3)2016 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-27355963

RESUMEN

The main purpose of this study was to develop a solid self-nanoemulsifying drug delivery system (S-SNEDDS) of Olmesartan (OLM) for enhancement of its solubility and dissolution rate. In this study, liquid SNEDDS containing Olmesartan was formulated and further developed into a solid form by the spray drying technique using Aerosil 200 as a solid carrier. Based on the preliminary screening of different unloaded SNEDDS formulae, eight formulae of OLM loaded SNEEDS were prepared using Capryol 90, Cremophor RH40 and Transcutol HP as oil, surfactant and cosurfactant, respectively. Results showed that the mean droplet size of all reconstituted SNEDDS was found to be in the nanometric range (14.91-22.97 nm) with optimum PDI values (0.036-0.241). All formulae also showed rapid emulsification time (15.46 ± 1.34-24.17 ± 1.47 s), good optical clarity (98.33% ± 0.16%-99.87% ± 0.31%) and high drug loading efficiency (96.41% ± 1.20%-99.65% ± 1.11%). TEM analysis revealed the formation of spherical and homogeneous droplets with a size smaller than 50 nm. In vitro release of OLM from SNEDDS formulae showed that more than 90% of OLM released in approximately 90 min. Optimized SNEDDS formulae were selected to be developed into S-SNEDDS using the spray drying technique. The prepared S-SNEDDS formulae were evaluated for flow properties, differential scanning calorimetry (DSC), scanning electron microscopy (SEM), reconstitution properties, drug content and in vitro dissolution study. It was found that S-SNEDDS formulae showed good flow properties and high drug content. Reconstitution properties of S-SNEDDS showed spontaneous self-nanoemulsification and no sign of phase separation. DSC thermograms revealed that OLM was in solubilized form and FTIR supported these findings. SEM photographs showed smooth uniform surface of S-SNEDDS with less aggregation. Results of the in vitro drug release showed that there was great enhancement in the dissolution rate of OLM. To clarify the possible improvement in pharmacokinetic behavior of OLM S-SNEDDS, plasma concentration-time curve profiles of OLM after the oral administration of optimized S-SNEDDS formula (F3) were compared to marketed product and pure drug in suspension. At all time points, it was observed that OLM plasma concentrations in rats treated with S-SNEDDS were significantly higher than those treated with the drug in suspension and marketed product.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...