Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
PeerJ ; 9: e11952, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34532157

RESUMEN

The endangered Chiapas killifish Tlaloc hildebrandi is an endemic freshwater species that lives in four subbasins of the Grijalva and Usumacinta basins, and one of the most geographically restricted species of the Produndulidae family. The species was originally described as endemic to springs in the high limestone plateau in San Cristóbal de Las Casas in the Río Amarillo subbasin (upper Grijalva basin). However, it was recently recorded in the Jataté and Tzaconejá subbasins in the upper Usumacinta basin, thereby expanding its known distribution range. The discovery of these populations is relevant not only for the conservation of the species but also for a better understanding of its evolutionary history. Currently, the scarce populations of T. hildebrandi, found in only a few localities in the Grijalva and Usumacinta basins, are fragmented and living under unfavorable conditions. Here, we analyzed three mitochondrial (mt-atp8&6 and mt-nd2) and one nuclear (nuc-s7) marker in order to assess the genetic diversity and population structure of T. hildebrandi. We found that, in comparison with other endangered freshwater fish species from Mexico, T. hildebrandi showed a lower level of genetic diversity (mt-nd2: h = 0.469, π = 0.0009; mt-atp8&6: h = 0.398, π = 0.001; and nuc-S7: h = 0.433, π = 0.001). Moreover, the analyzed populations exhibited a strong genetic structure in accordance with their geographic distribution, and can be placed into three genetic clusters: (1) Amarillo plus Chenhaló in the upper Grijalva basin, (2) Jataté, and (3) Tzaconejá, both in the upper Usumacinta basin. On the basis of our results, we propose the recognition of at least three evolutionarily significant units (ESUs) for the species and the urgent implementation of ex situ and in situ conservation and management efforts that consider the genetic background of the species.

2.
J Evol Biol ; 34(11): 1752-1766, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34545659

RESUMEN

Intraspecific ecological and morphological polymorphism can promote ecological speciation and the build-up of reproductive isolation. Here, we evaluate correlations among morphology, trophic ecology and genetic differentiation between two divergent morphs (elongate and deep-body) of the fish genus Astyanax in the San Juan River basin in Central America, to infer the putative evolutionary mechanism shaping this system. We collected the two morphs from three water bodies and analysed: (1) the correlation between body shape and the shape of the premaxilla, a relevant trophic morphological structure, (2) the trophic level and niche width of each morph, (3) the correspondence between trophic level and body and premaxillary shape, and (4) the genetic differentiation between morphs using mitochondrial and nuclear markers. We found a strong correlation between the body and premaxillary shape of the morphs. The elongate-body morph had a streamlined body, a premaxilla with acuter angles and a narrower ascending process, and a higher trophic level, characteristic of species with predatorial habits. By contrast, the deep-body morph had a higher body depth, a premaxilla with less acute angles and a broader trophic niche, suggesting generalist habits. Despite the strong correlation between morphological and ecological divergence, the morphs showed limited genetic differentiation, supporting the idea that morphs may be undergoing incipient ecological speciation, although alternative scenarios such as stable polymorphism or plasticity should also be considered. This study provides support for the role of ecological factors promoting diversification in both lake and stream-dwelling freshwater fish.


Asunto(s)
Evolución Biológica , Simpatría , Animales , Peces , Especiación Genética , Lagos , Polimorfismo Genético
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...