Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
bioRxiv ; 2024 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-38405970

RESUMEN

Embryonic organoids are emerging as powerful models for studying early mammalian development. For example, stem cell-derived 'gastruloids' form elongating structures containing all three germ layers1-4. However, although elongated, human gastruloids do not morphologically resemble post-implantation embryos. Here we show that a specific, discontinuous regimen of retinoic acid (RA) robustly induces human gastruloids with embryo-like morphological structures, including a neural tube and segmented somites. Single cell RNA-seq (sc-RNA-seq) further reveals that these human 'RA-gastruloids' contain more advanced cell types than conventional gastruloids, including neural crest cells, renal progenitor cells, skeletal muscle cells, and, rarely, neural progenitor cells. We apply a new approach to computationally stage human RA-gastruloids relative to somite-resolved mouse embryos, early human embryos and other gastruloid models, and find that the developmental stage of human RA-gastruloids is comparable to that of E9.5 mouse embryos, although some cell types show greater or lesser progression. We chemically perturb WNT and BMP signaling in human RA-gastruloids and find that these signaling pathways regulate somite patterning and neural tube length, respectively, while genetic perturbation of the transcription factors PAX3 and TBX6 markedly compromises the formation of neural crest and somites/renal cells, respectively. Human RA-gastruloids complement other embryonic organoids in serving as a simple, robust and screenable model for decoding early human embryogenesis.

2.
G3 (Bethesda) ; 14(3)2024 03 06.
Artículo en Inglés | MEDLINE | ID: mdl-38135291

RESUMEN

Studying the genetic and molecular characteristics of brewing yeast strains is crucial for understanding their domestication history and adaptations accumulated over time in fermentation environments, and for guiding optimizations to the brewing process itself. Saccharomyces cerevisiae (brewing yeast) is among the most profiled organisms on the planet, yet the temporal molecular changes that underlie industrial fermentation and beer brewing remain understudied. Here, we characterized the genomic makeup of a Saccharomyces cerevisiae ale yeast widely used in the production of Hefeweizen beers, and applied shotgun mass spectrometry to systematically measure the proteomic changes throughout 2 fermentation cycles which were separated by 14 rounds of serial repitching. The resulting brewing yeast proteomics resource includes 64,740 protein abundance measurements. We found that this strain possesses typical genetic characteristics of Saccharomyces cerevisiae ale strains and displayed progressive shifts in molecular processes during fermentation based on protein abundance changes. We observed protein abundance differences between early fermentation batches compared to those separated by 14 rounds of serial repitching. The observed abundance differences occurred mainly in proteins involved in the metabolism of ergosterol and isobutyraldehyde. Our systematic profiling serves as a starting point for deeper characterization of how the yeast proteome changes during commercial fermentations and additionally serves as a resource to guide fermentation protocols, strain handling, and engineering practices in commercial brewing and fermentation environments. Finally, we created a web interface (https://brewing-yeast-proteomics.ccbb.utexas.edu/) to serve as a valuable resource for yeast geneticists, brewers, and biochemists to provide insights into the global trends underlying commercial beer production.


Asunto(s)
Proteómica , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Fermentación , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Cerveza/análisis
3.
bioRxiv ; 2023 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-37790497

RESUMEN

Studying the genetic and molecular characteristics of brewing yeast strains is crucial for understanding their domestication history and adaptations accumulated over time in fermentation environments, and for guiding optimizations to the brewing process itself. Saccharomyces cerevisiae (brewing yeast) is amongst the most profiled organisms on the planet, yet the temporal molecular changes that underlie industrial fermentation and beer brewing remain understudied. Here, we characterized the genomic makeup of a Saccharomyces cerevisiae ale yeast widely used in the production of Hefeweizen beers, and applied shotgun mass spectrometry to systematically measure the proteomic changes throughout two fermentation cycles which were separated by 14 rounds of serial repitching. The resulting brewing yeast proteomics resource includes 64,740 protein abundance measurements. We found that this strain possesses typical genetic characteristics of Saccharomyces cerevisiae ale strains and displayed progressive shifts in molecular processes during fermentation based on protein abundance changes. We observed protein abundance differences between early fermentation batches compared to those separated by 14 rounds of serial repitching. The observed abundance differences occurred mainly in proteins involved in the metabolism of ergosterol and isobutyraldehyde. Our systematic profiling serves as a starting point for deeper characterization of how the yeast proteome changes during commercial fermentations and additionally serves as a resource to guide fermentation protocols, strain handling, and engineering practices in commercial brewing and fermentation environments. Finally, we created a web interface (https://brewing-yeast-proteomics.ccbb.utexas.edu/) to serve as a valuable resource for yeast geneticists, brewers, and biochemists to provide insights into the global trends underlying commercial beer production.

4.
Cell Rep Methods ; 3(5): 100464, 2023 05 22.
Artículo en Inglés | MEDLINE | ID: mdl-37323580

RESUMEN

A major challenge to rationally building multi-gene processes in yeast arises due to the combinatorics of combining all of the individual edits into the same strain. Here, we present a precise and multi-site genome editing approach that combines all edits without selection markers using CRISPR-Cas9. We demonstrate a highly efficient gene drive that selectively eliminates specific loci by integrating CRISPR-Cas9-mediated double-strand break (DSB) generation and homology-directed recombination with yeast sexual assortment. The method enables marker-less enrichment and recombination of genetically engineered loci (MERGE). We show that MERGE converts single heterologous loci to homozygous loci at ∼100% efficiency, independent of chromosomal location. Furthermore, MERGE is equally efficient at converting and combining multiple loci, thus identifying compatible genotypes. Finally, we establish MERGE proficiency by engineering a fungal carotenoid biosynthesis pathway and most of the human α-proteasome core into yeast. Therefore, MERGE lays the foundation for scalable, combinatorial genome editing in yeast.


Asunto(s)
Sistemas CRISPR-Cas , Saccharomyces cerevisiae , Humanos , Sistemas CRISPR-Cas/genética , Saccharomyces cerevisiae/genética , Edición Génica , Ingeniería Genética , Recombinación Homóloga
5.
Nat Commun ; 13(1): 2882, 2022 05 24.
Artículo en Inglés | MEDLINE | ID: mdl-35610225

RESUMEN

The yeast Saccharomyces cerevisiae is powerful for studying human G protein-coupled receptors as they can be coupled to its mating pathway. However, some receptors, including the mu opioid receptor, are non-functional, which may be due to the presence of the fungal sterol ergosterol instead of cholesterol. Here we engineer yeast to produce cholesterol and introduce diverse mu, delta, and kappa opioid receptors to create sensitive opioid biosensors that recapitulate agonist binding profiles and antagonist inhibition. Additionally, human mu opioid receptor variants, including those with clinical relevance, largely display expected phenotypes. By testing mu opioid receptor-based biosensors with systematically adjusted cholesterol biosynthetic intermediates, we relate sterol profiles to biosensor sensitivity. Finally, we apply sterol-modified backgrounds to other human receptors revealing sterol influence in SSTR5, 5-HTR4, FPR1, and NPY1R signaling. This work provides a platform for generating human G protein-coupled receptor-based biosensors, facilitating receptor deorphanization and high-throughput screening of receptors and effectors.


Asunto(s)
Fitosteroles , Saccharomyces cerevisiae , Colesterol/metabolismo , Humanos , Fitosteroles/metabolismo , Receptores Opioides/metabolismo , Receptores Opioides kappa/agonistas , Receptores Opioides kappa/genética , Receptores Opioides mu/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Esteroles/metabolismo
6.
Genetics ; 219(1)2021 08 26.
Artículo en Inglés | MEDLINE | ID: mdl-34849907

RESUMEN

Thiabendazole (TBZ) is an FDA-approved benzimidazole widely used for its antifungal and antihelminthic properties. We showed previously that TBZ is also a potent vascular disrupting agent and inhibits angiogenesis at the tissue level by dissociating vascular endothelial cells in newly formed blood vessels. Here, we uncover TBZ's molecular target and mechanism of action. Using human cell culture, molecular modeling, and humanized yeast, we find that TBZ selectively targets only 1 of 9 human ß-tubulin isotypes (TUBB8) to specifically disrupt endothelial cell microtubules. By leveraging epidemiological pesticide resistance data and mining chemical features of commercially used benzimidazoles, we discover that a broader class of benzimidazole compounds, in extensive use for 50 years, also potently disrupt immature blood vessels and inhibit angiogenesis. Thus, besides identifying the molecular mechanism of benzimidazole-mediated vascular disruption, this study presents evidence relevant to the widespread use of these compounds while offering potential new clinical applications.


Asunto(s)
Células Endoteliales
7.
Dev Biol ; 476: 240-248, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33864778

RESUMEN

Female fertility in mammals requires iterative remodeling of the entire adult female reproductive tract across the menstrual/estrous cycle. However, while transcriptome dynamics across the estrous cycle have been reported in human and bovine models, no global analysis of gene expression across the estrous cycle has yet been reported for the mouse. Here, we examined the cellular composition and global transcriptional dynamics of the mouse oviduct along the anteroposterior axis and across the estrous cycle. We observed robust patterns of differential gene expression along the anteroposterior axis, but we found surprisingly few changes in gene expression across the estrous cycle. Notable gene expression differences along the anteroposterior axis included a surprising enrichment for genes related to embryonic development, such as Hox and Wnt genes. The relatively stable transcriptional dynamics across the estrous cycle differ markedly from other mammals, leading us to speculate that this is an evolutionarily derived state that may reflect the extremely rapid five-day mouse estrous cycle. This dataset fills a critical gap by providing an important genomic resource for a highly tractable genetic model of mammalian female reproduction.


Asunto(s)
Fertilidad/genética , Oviductos/metabolismo , Transcriptoma/genética , Animales , Desarrollo Embrionario/genética , Ciclo Estral/genética , Femenino , Fertilidad/fisiología , Expresión Génica/genética , Perfilación de la Expresión Génica/métodos , Regulación de la Expresión Génica/genética , Ratones , Oviductos/fisiología , Embarazo
8.
Genetics ; 215(4): 1153-1169, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32522745

RESUMEN

Many gene families have been expanded by gene duplications along the human lineage, relative to ancestral opisthokonts, but the extent to which the duplicated genes function similarly is understudied. Here, we focused on structural cytoskeletal genes involved in critical cellular processes, including chromosome segregation, macromolecular transport, and cell shape maintenance. To determine functional redundancy and divergence of duplicated human genes, we systematically humanized the yeast actin, myosin, tubulin, and septin genes, testing ∼81% of human cytoskeletal genes across seven gene families for their ability to complement a growth defect induced by inactivation or deletion of the corresponding yeast ortholog. In five of seven families-all but α-tubulin and light myosin, we found at least one human gene capable of complementing loss of the yeast gene. Despite rescuing growth defects, we observed differential abilities of human genes to rescue cell morphology, meiosis, and mating defects. By comparing phenotypes of humanized strains with deletion phenotypes of their interaction partners, we identify instances of human genes in the actin and septin families capable of carrying out essential functions, but failing to fully complement the cytoskeletal roles of their yeast orthologs, thus leading to abnormal cell morphologies. Overall, we show that duplicated human cytoskeletal genes appear to have diverged such that only a few human genes within each family are capable of replacing the essential roles of their yeast orthologs. The resulting yeast strains with humanized cytoskeletal components now provide surrogate platforms to characterize human genes in simplified eukaryotic contexts.


Asunto(s)
Proteínas del Citoesqueleto/metabolismo , Prueba de Complementación Genética , Fenotipo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/crecimiento & desarrollo , Proteínas del Citoesqueleto/genética , Duplicación de Gen , Humanos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Septinas/genética , Septinas/metabolismo , Tubulina (Proteína)/genética , Tubulina (Proteína)/metabolismo
9.
PLoS Biol ; 18(5): e3000627, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32421706

RESUMEN

Despite over a billion years of evolutionary divergence, several thousand human genes possess clearly identifiable orthologs in yeast, and many have undergone lineage-specific duplications in one or both lineages. These duplicated genes may have been free to diverge in function since their expansion, and it is unclear how or at what rate ancestral functions are retained or partitioned among co-orthologs between species and within gene families. Thus, in order to investigate how ancestral functions are retained or lost post-duplication, we systematically replaced hundreds of essential yeast genes with their human orthologs from gene families that have undergone lineage-specific duplications, including those with single duplications (1 yeast gene to 2 human genes, 1:2) or higher-order expansions (1:>2) in the human lineage. We observe a variable pattern of replaceability across different ortholog classes, with an obvious trend toward differential replaceability inside gene families, and rarely observe replaceability by all members of a family. We quantify the ability of various properties of the orthologs to predict replaceability, showing that in the case of 1:2 orthologs, replaceability is predicted largely by the divergence and tissue-specific expression of the human co-orthologs, i.e., the human proteins that are less diverged from their yeast counterpart and more ubiquitously expressed across human tissues more often replace their single yeast ortholog. These trends were consistent with in silico simulations demonstrating that when only one ortholog can replace its corresponding yeast equivalent, it tends to be the least diverged of the pair. Replaceability of yeast genes having more than 2 human co-orthologs was marked by retention of orthologous interactions in functional or protein networks as well as by more ancestral subcellular localization. Overall, we performed >400 human gene replaceability assays, revealing 50 new human-yeast complementation pairs, thus opening up avenues to further functionally characterize these human genes in a simplified organismal context.


Asunto(s)
Evolución Molecular , Genes Duplicados , Genes Fúngicos , Familia de Multigenes , Saccharomycetales/genética , Expresión Génica , Prueba de Complementación Genética , Humanos , Homología de Secuencia de Ácido Nucleico
10.
Mol Biol Cell ; 31(10): 1069-1084, 2020 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-32129706

RESUMEN

Establishing the pattern of abundance of molecules of interest during cell division has been a long-standing goal of cell cycle studies. Here, for the first time in any system, we present experiment-matched datasets of the levels of RNAs, proteins, metabolites, and lipids from unarrested, growing, and synchronously dividing yeast cells. Overall, transcript and protein levels were correlated, but specific processes that appeared to change at the RNA level (e.g., ribosome biogenesis) did not do so at the protein level, and vice versa. We also found no significant changes in codon usage or the ribosome content during the cell cycle. We describe an unexpected mitotic peak in the abundance of ergosterol and thiamine biosynthesis enzymes. Although the levels of several metabolites changed in the cell cycle, by far the most significant changes were in the lipid repertoire, with phospholipids and triglycerides peaking strongly late in the cell cycle. Our findings provide an integrated view of the abundance of biomolecules in the eukaryotic cell cycle and point to a coordinate mitotic control of lipid metabolism.


Asunto(s)
Ciclo Celular , Metabolismo de los Lípidos/genética , Metaboloma , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/metabolismo , Regulación Fúngica de la Expresión Génica , Lípidos/química , Proteoma/metabolismo , Proteómica , ARN Mensajero/genética , ARN Mensajero/metabolismo , Proteínas Ribosómicas/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Tiamina/biosíntesis , Tiamina Pirofosfato/metabolismo
12.
Bio Protoc ; 8(6)2018 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-29770349

RESUMEN

Genome modification in budding yeast has been extremely successful largely due to its highly efficient homology-directed DNA repair machinery. Several methods for modifying the yeast genome have previously been described, many of them involving at least two-steps: insertion of a selectable marker and substitution of that marker for the intended modification. Here, we describe a CRISPR-Cas9 mediated genome editing protocol for modifying any yeast gene of interest (either essential or nonessential) in a single-step transformation without any selectable marker. In this system, the Cas9 nuclease creates a double-stranded break at the locus of choice, which is typically lethal in yeast cells regardless of the essentiality of the targeted locus due to inefficient non-homologous end-joining repair. This lethality results in efficient repair via homologous recombination using a repair template derived from PCR. In cases involving essential genes, the necessity of editing the genomic lesion with a functional allele serves as an additional layer of selection. As a motivating example, we describe the use of this strategy in the replacement of HEM2, an essential yeast gene, with its corresponding human ortholog ALAD.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...