Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Phys Imaging Radiat Oncol ; 28: 100490, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37705690

RESUMEN

Background and purpose: Simulation-free radiotherapy, where diagnostic imaging is used for treatment planning, improves accessibility of radiotherapy for eligible palliative patients. Combining this pathway with online adaptive radiotherapy (oART) may improve accuracy of treatment, expanding the number of eligible patients. This study evaluated the adaptive process duration, plan dose volume histogram (DVH) metrics and geometric accuracy of a commercial cone-beam computed tomography (CBCT)-guided oART system for simulation-free, palliative radiotherapy. Materials and methods: Ten previously treated palliative cases were used to compare system-generated contours against clinician contours in a test environment with Dice Similarity Coefficient (DSC). Twenty simulation-free palliative patients were treated clinically using CBCT-guided oART. Analysis of oART clinical treatment data included; evaluation of the geometric accuracy of system-generated synthetic CT relative to session CBCT anatomy using a Likert scale, comparison of adaptive plan dose distributions to unadapted, using DVH metrics and recording the duration of key steps in the oART workflow. Results: Auto-generated contours achieved a DSC of higher than 0.85, excluding the stomach which was attributed to CBCT image quality issues. Synthetic CT was locally aligned to CBCT anatomy for approximately 80% of fractions, with the remaining suboptimal yet clinically acceptable. Adaptive plans achieved a median CTV V95% of 99.5%, compared to 95.6% for unadapted. The median overall oART process duration was found to be 13.2 mins, with contour editing being the most time-intensive adaptive step. Conclusions: The CBCT-guided oART system utilising a simulation-free planning approach was found to be sufficiently accurate for clinical implementation, this may further streamline and improve care for palliative patients.

2.
Biomed Phys Eng Express ; 9(3)2023 03 07.
Artículo en Inglés | MEDLINE | ID: mdl-36689758

RESUMEN

Real-time target position verification during pancreas stereotactic body radiation therapy (SBRT) is important for the detection of unplanned tumour motions. Fast and accurate fiducial marker segmentation is a Requirement of real-time marker-based verification. Deep learning (DL) segmentation techniques are ideal because they don't require additional learning imaging or prior marker information (e.g., shape, orientation). In this study, we evaluated three DL frameworks for marker tracking applied to pancreatic cancer patient data. The DL frameworks evaluated were (1) a convolutional neural network (CNN) classifier with sliding window, (2) a pretrained you-only-look-once (YOLO) version-4 architecture, and (3) a hybrid CNN-YOLO. Intrafraction kV images collected during pancreas SBRT treatments were used as training data (44 fractions, 2017 frames). All patients had 1-4 implanted fiducial markers. Each model was evaluated on unseen kV images (42 fractions, 2517 frames). The ground truth was calculated from manual segmentation and triangulation of markers in orthogonal paired kV/MV images. The sensitivity, specificity, and area under the precision-recall curve (AUC) were calculated. In addition, the mean-absolute-error (MAE), root-mean-square-error (RMSE) and standard-error-of-mean (SEM) were calculated for the centroid of the markers predicted by the models, relative to the ground truth. The sensitivity and specificity of the CNN model were 99.41% and 99.69%, respectively. The AUC was 0.9998. The average precision of the YOLO model for different values of recall was 96.49%. The MAE of the three models in the left-right, superior-inferior, and anterior-posterior directions were under 0.88 ± 0.11 mm, and the RMSE were under 1.09 ± 0.12 mm. The detection times per frame on a GPU were 48.3, 22.9, and 17.1 milliseconds for the CNN, YOLO, and CNN-YOLO, respectively. The results demonstrate submillimeter accuracy of marker position predicted by DL models compared to the ground truth. The marker detection time was fast enough to meet the requirements for real-time application.


Asunto(s)
Aprendizaje Profundo , Neoplasias Pancreáticas , Humanos , Marcadores Fiduciales , Movimiento (Física) , Neoplasias Pancreáticas/diagnóstico por imagen , Neoplasias Pancreáticas/radioterapia , Neoplasias Pancreáticas
3.
Med Phys ; 47(4): 1920-1929, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-31917865

RESUMEN

PURPOSE: Dynamic dosimaging is a concept whereby a detector in motion is tracked with magnetic resonance imaging (MRI) to validate the amount and position of dose in a radiation therapy treatment on an MRI-linac. This work takes steps toward the realization of dynamic dosimaging with the novel high resolution silicon array detector: MagicPlate-512 (M512). The performance of the M512 was assessed in a 1.0 T inline MRI-linac, without simultaneous imaging and then during an imaging sequence, both during dosimetry. MR images were acquired to determine the effect of the detector and its components on image quality. METHODS: Beam profiles were measured using the M512 on the Australian MRI-Linac and a comparison made with Gafchromic EBT3 film to investigate any intrinsic magnetic field effects in the silicon. The M512 has 512 sensitive volumes, each 0.5 × 0.5 × 0.037 mm3 in dimension, organized in a two-dimensional array. Small field sizes up to 4.2 × 3.8 cm2 were investigated in both solid water and then solid lung phantoms. Beam profiles taken at 1.0 T were compared to 0 T conditions, and also to profiles taken during a gradient echo (GRE) imaging sequence. Differences in 80%-20% penumbral width and full width at half maximum (FWHM) were investigated. Localizer MR images were acquired of the detector adjacent to a water phantom. RESULTS: Good agreement was observed between the M512 and film, with average differences in penumbral width and FWHM of <1 mm in the absence of the imaging sequence. Concurrent imaging widened the penumbra by up to 1.2 mm due to RF noise affecting the detector; film profiles were unchanged. Magnetic resonance images were affected by noise, in particular, due to the large amount of aluminum present, as well as from the USB cable, which acted as an antenna. Unfortunately, due to these issues, suitable dynamic dose imaging was not achieved with the current M512/phantom configuration and the MRI-linac. However, progress was made toward achieving this goal for future work. CONCLUSIONS: The M512 silicon array detector successfully measured high-resolution beam profiles in agreement with Gafchromic film to within an average of <1 mm on the first MRI-linac in Australia. More effective noise reduction will be required for the achievement of dynamic dosimaging in the future.


Asunto(s)
Imagen por Resonancia Magnética/instrumentación , Aceleradores de Partículas , Silicio
4.
Phys Imaging Radiat Oncol ; 14: 43-47, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33458313

RESUMEN

Radiological water equivalence of solid phantoms used for radiotherapy is often desired, but is non-trivial to achieve across the range of therapeutic energies. This study evaluated the water equivalence of a new solid phantom material in beam qualities relevant to radiotherapy applications. In-phantom measured depth distributions were compared to that in water to assess the relative attenuation and scatter characteristics of the material. The phantom material was found to be dosimetrically equivalent to water within (1.0 ± 1.0)% for megavoltage photon beam qualities, (1.5 ± 1.3)% for megavoltage electron beam qualities, (1.5 ± 1.5)% for medium-energy kilovoltage X-rays and (3.0 ± 1.5)% for low-energy kilovoltage X-rays.

5.
Med Phys ; 46(9): 4224-4232, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31246282

RESUMEN

PURPOSE: Magnetic field effects on dose distribution and detector functionality must be well understood. The detector utilized to investigate these magnetic field effects was the DUO silicon array detector; the performance of this high spatial resolution detector was assessed under these conditions. The results were compared to Gafchromic EBT3 film to highlight any intrinsic magnetic field effects in the silicon. The results were also compared to previously published MagicPlate-512 (M512) data. The DUO has an improved spatial resolution (200 µm) over the M512 (2 mm). METHODS: A permanent magnet named Magnetic Apparatus for RaDiation Oncology Studies (MARDOS) paired with a standard linear accelerator (linac) enables either transverse (1.2 T) or inline (0.95 T) orientations of the magnetic field with respect to the radiation beam. A 6 MV Varian 2100C Linac provided the radiation component for the measurements. The DUO detector has 505 sensitive volumes (each volume measuring 800 × 40 × 100 µm3 ) organized in two orthogonal, linear arrays. The DUO was embedded in a solid water phantom in the first set-up and then a solid lung phantom in the second set-up and placed between the magnet cones. Beam profiles were compared under the magnetic field conditions and 0 T. Small field sizes from 0.8 × 0.8 cm2 up to 2.3 × 2.3 cm2 were investigated. The size of the air gap above the sensitive volumes of the DUO was investigated in the transverse orientation to assess the anticipated magnetic field effects. Full width at half maximum (FWHM), 80-20% penumbral widths and maximum dose differences between detectors and between the presence/absence of a magnetic field were investigated. Symmetry was also assessed for investigation of profile skewness under the transverse field. RESULTS: The penumbral widths measured by the DUO detector demonstrated good agreement with film and the M512 to within an average of 0.5 mm (within uncertainty: ±1 mm). The static inline magnetic field had minimal effect on the profiles in solid water. As expected, the lower density of solid lung meant that this material was more susceptible to demonstrating magnetic field effects in the dose deposited. The greatest penumbral narrowing due to the inline field (0.7 mm) occurred in lung. Central axis dose increase was greatest in lung (maximum: 9%). The transverse field widened penumbra, most notably in the solid lung phantom, by a maximum of 2.3 mm. The largest asymmetry due to the transverse field (4.6%) was also in solid lung. When the air gap above the DUO was filled with bolus, the dose maximum measured by the DUO was within 1.4% of film. CONCLUSIONS: The DUO detector has been shown to be successful in accurately describing the dose changes for small field sizes to within a 200-µm resolution in an environment resembling that of an MRI-linac. The DUO measurements were in agreement with both film and the M512 measurements, and therefore the DUO was found to be an appropriate alternative to the M512, with improvement in terms of its higher spatial resolution. MARDOS provided a suitable environment for these preliminary tests before progressing to the MRI-linac.


Asunto(s)
Campos Magnéticos , Radiometría/instrumentación , Silicio , Calibración , Estudios de Factibilidad , Aceleradores de Partículas , Control de Calidad
6.
Radiother Oncol ; 125(3): 433-438, 2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-28985954

RESUMEN

BACKGROUND AND PURPOSE: To present experimental evidence of lung dose enhancement effects caused by strong inline magnetic fields. MATERIALS AND METHODS: A permanent magnet device was utilised to generate 0.95T-1.2T magnetic fields that encompassed two small lung-equivalent phantoms of density 0.3g/cm3. Small 6MV and 10MV photon beams were incident parallel with the magnetic field direction and Gafchromic EBT3 film was placed inside the lung phantoms, perpendicular to the beam (experiment 1) and parallel to the beam (experiment 2). Monte Carlo simulations of experiment 1 were also performed. RESULTS: Experiment 1: The 1.2T inline magnetic field induced a 12% (6MV) and 14% (10MV) increase in the dose at the phantom centre. The Monte Carlo modelling matched well (±2%) to the experimentally observed results. Experiment 2: A 0.95T field peaked at the phantom centroid (but not at the phantom entry/exit regions) details a clear dose increase due to the magnetic field of up to 25%. CONCLUSIONS: This experimental work has demonstrated how strong inline magnetic fields act to enhance the dose to lower density mediums such as lung tissue. Clinically, such scenarios will arise in inline MRI-linac systems for treatment of small lung tumours.


Asunto(s)
Neoplasias Pulmonares/radioterapia , Campos Magnéticos , Imagen por Resonancia Magnética/métodos , Radioterapia Guiada por Imagen/métodos , Humanos , Método de Montecarlo , Fantasmas de Imagen , Dosis de Radiación
7.
Australas Phys Eng Sci Med ; 39(4): 921-932, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27815727

RESUMEN

Tracking the position of a moving radiation detector in time and space during data acquisition can replicate 4D image-guided radiotherapy (4DIGRT). Magnetic resonance imaging (MRI)-linacs need MRI-visible detectors to achieve this, however, imaging solid phantoms is an issue. Hence, gel-water, a material that provides signal for MRI-visibility, and which will in future work, replace solid water for an MRI-linac 4DIGRT quality assurance tool, is discussed. MR and CT images of gel-water were acquired for visualisation and electron density verification. Characterisation of gel-water at 0 T was compared to Gammex-RMI solid water, using MagicPlate-512 (M512) and RMI Attix chamber; this included percentage depth dose, tissue-phantom ratio (TPR20/10), tissue-maximum ratio (TMR), profiles, output factors, and a gamma analysis to investigate field penumbral differences. MR images of a non-powered detector in gel-water demonstrated detector visualisation. The CT-determined gel-water electron density agreed with the calculated value of 1.01. Gel-water depth dose data demonstrated a maximum deviation of 0.7% from solid water for M512 and 2.4% for the Attix chamber, and by 2.1% for TPR20/10 and 1.0% for TMR. FWHM and output factor differences between materials were ≤0.3 and ≤1.4%. M512 data passed gamma analysis with 100% within 2%, 2 mm tolerance for multileaf collimator defined fields. Gel-water was shown to be tissue-equivalent for dosimetry and a feasible option to replace solid water.


Asunto(s)
Geles/química , Imagen por Resonancia Magnética/métodos , Aceleradores de Partículas , Radiometría , Agua/química , Relación Dosis-Respuesta en la Radiación , Electrones , Fantasmas de Imagen , Tomografía Computarizada por Rayos X
8.
Med Phys ; 42(2): 856-65, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25652498

RESUMEN

PURPOSE: MRI-guided radiation therapy systems (MRIgRT) are being developed to improve online imaging during treatment delivery. At present, the operation of single point dosimeters and an ionization chamber array have been characterized in such systems. This work investigates a novel 2D diode array, named "magic plate," for both single point calibration and 2D positional performance, the latter being a key element of modern radiotherapy techniques that will be delivered by these systems. METHODS: geant4 Monte Carlo methods have been employed to study the dose response of a silicon diode array to 6 MV photon beams, in the presence of in-line and perpendicularly aligned uniform magnetic fields. The array consists of 121 silicon diodes (dimensions 1.5 × 1.5 × 0.38 mm(3)) embedded in kapton substrate with 1 cm pitch, spanning a 10 × 10 cm(2) area in total. A geometrically identical, water equivalent volume was simulated concurrently for comparison. The dose response of the silicon diode array was assessed for various photon beam field shapes and sizes, including an IMRT field, at 1 T. The dose response was further investigated at larger magnetic field strengths (1.5 and 3 T) for a 4 × 4 cm(2) photon field size. RESULTS: The magic plate diode array shows excellent correspondence (< ± 1%) to water dose in the in-line orientation, for all beam arrangements and magnetic field strengths investigated. The perpendicular orientation, however, exhibits a dose shift with respect to water at the high-dose-gradient beam edge of jaw-defined fields [maximum (4.3 ± 0.8)% over-response, maximum (1.8 ± 0.8)% under-response on opposing side for 1 T, uncertainty 1σ]. The trend is not evident in areas with in-field dose gradients typical of IMRT dose maps. CONCLUSIONS: A novel 121 pixel silicon diode array detector has been characterized by Monte Carlo simulation for its performance inside magnetic fields representative of current prototype and proposed MRI-linear accelerator systems. In the in-line orientation, the silicon dose is directly proportional to the water dose. In the perpendicular orientation, there is a shift in dose response relative to water in the highest dose gradient regions, at the edge of jaw-defined and single-segment MLC fields. The trend was not observed in-field for an IMRT beam. The array is expected to be a valuable tool in MRIgRT dosimetry.


Asunto(s)
Imagen por Resonancia Magnética , Método de Montecarlo , Aceleradores de Partículas , Radioterapia Guiada por Imagen/instrumentación , Silicio , Dosis de Radiación , Radioterapia de Intensidad Modulada
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...