Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Neuroinflammation ; 20(1): 211, 2023 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-37726739

RESUMEN

The contribution of the gut microbiome to neuroinflammation, cognition, and Alzheimer's disease progression has been highlighted over the past few years. Additionally, inhibition of various components of the complement system has repeatedly been demonstrated to reduce neuroinflammation and improve cognitive performance in AD mouse models. Whether the deletion of these complement components is associated with distinct microbiome composition, which could impact neuroinflammation and cognitive performance in mouse models has not yet been examined. Here, we provide a comprehensive analysis of conditional and constitutive knockouts, pharmacological inhibitors, and various housing paradigms for the animal models and wild-type controls at various ages. We aimed to determine the impact of C1q or C5aR1 inhibition on the microbiome in the Arctic and Tg2576 mouse models of AD, which develop amyloid plaques at different ages and locations. Analysis of fecal samples from WT and Arctic mice following global deletion of C1q demonstrated significant alterations to the microbiomes of Arctic but not WT mice, with substantial differences in abundances of Erysipelotrichales, Clostridiales and Alistipes. While no differences in microbiome diversity were detected between cohoused wildtype and Arctic mice with or without the constitutive deletion of the downstream complement receptor, C5aR1, a difference was detected between the C5aR1 sufficient (WT and Arctic) and deficient (C5ar1KO and ArcticC5aR1KO) mice, when the mice were housed segregated by C5aR1 genotype. However, cohousing of C5aR1 sufficient and deficient wildtype and Arctic mice resulted in a convergence of the microbiomes and equalized abundances of each identified order and genus across all genotypes. Similarly, pharmacologic treatment with the C5aR1 antagonist, PMX205, beginning at the onset of beta-amyloid plaque deposition in the Arctic and Tg2576 mice, demonstrated no impact of C5aR1 inhibition on the microbiome. This study demonstrates the importance of C1q in microbiota homeostasis in neurodegenerative disease. In addition, while demonstrating that constitutive deletion of C5aR1 can significantly alter the composition of the fecal microbiome, these differences are not present when C5aR1-deficient mice are cohoused with C5aR1-sufficient animals with or without the AD phenotype and suggests limited if any contribution of the microbiome to the previously observed prevention of cognitive and neuronal loss in the C5aR1-deficient AD models.


Asunto(s)
Enfermedad de Alzheimer , Microbioma Gastrointestinal , Enfermedades Neurodegenerativas , Animales , Ratones , Enfermedad de Alzheimer/genética , Complemento C1q/genética , Modelos Animales de Enfermedad , Enfermedades Neuroinflamatorias , Receptores de Complemento/genética
2.
Cancer Cell ; 39(9): 1202-1213.e6, 2021 09 13.
Artículo en Inglés | MEDLINE | ID: mdl-34329585

RESUMEN

Studies suggest that the efficacy of cancer chemotherapy and immunotherapy is influenced by intestinal bacteria. However, the influence of the microbiome on radiation therapy is not as well understood, and the microbiome comprises more than bacteria. Here, we find that intestinal fungi regulate antitumor immune responses following radiation in mouse models of breast cancer and melanoma and that fungi and bacteria have opposite influences on these responses. Antibiotic-mediated depletion or gnotobiotic exclusion of fungi enhances responsiveness to radiation, whereas antibiotic-mediated depletion of bacteria reduces responsiveness and is associated with overgrowth of commensal fungi. Further, elevated intratumoral expression of Dectin-1, a primary innate sensor of fungi, is negatively associated with survival in patients with breast cancer and is required for the effects of commensal fungi in mouse models of radiation therapy.


Asunto(s)
Antifúngicos/administración & dosificación , Bacterias/clasificación , Neoplasias de la Mama/terapia , Hongos/efectos de los fármacos , Lectinas Tipo C/genética , Melanoma/terapia , Animales , Antifúngicos/farmacología , Bacterias/inmunología , Neoplasias de la Mama/inmunología , Neoplasias de la Mama/microbiología , Terapia Combinada , Regulación hacia Abajo , Femenino , Hongos/clasificación , Hongos/inmunología , Microbioma Gastrointestinal/efectos de los fármacos , Microbioma Gastrointestinal/efectos de la radiación , Regulación Neoplásica de la Expresión Génica/efectos de la radiación , Humanos , Melanoma/inmunología , Melanoma/microbiología , Ratones , Simbiosis , Linfocitos T/metabolismo , Macrófagos Asociados a Tumores/metabolismo , Regulación hacia Arriba/efectos de los fármacos , Regulación hacia Arriba/efectos de la radiación , Ensayos Antitumor por Modelo de Xenoinjerto
3.
Artículo en Inglés | MEDLINE | ID: mdl-33139284

RESUMEN

Antibiotic therapy is expected to impact host microbial communities considerably, yet many studies focused on microbiome and health are often confounded by limited information about antibiotic exposure. Given that antibiotics have diverse pharmacokinetic and antimicrobial properties, investigating the type and concentration of these agents in specific host specimens would provide much needed insight into their impact on the microbes therein. Here, we developed liquid chromatography mass spectrometry (LC-MS) methods to detect 18 antibiotic agents in sputum from persons with cystic fibrosis. Antibiotic spike-in control samples were used to compare three liquid extraction methods on the Waters Acquity Quattro Premier XE. Extraction with dithiothreitol captured the most antibiotics and was used to detect antibiotics in sputum samples from 11 people with cystic fibrosis, with results being compared to the individuals' self-reported antibiotic use. For the sputum samples, two LC-MS assays were used; the Quattro Premier detected nanomolar or micromolar concentrations of 16 antibiotics, whereas the Xevo TQ-XS detected all 18 antibiotics, most at subnanomolar levels. In 45% of tested sputum samples (71/158), at least one antibiotic that was not reported by the subject was detected by both LC-MS methods, a discordance largely explained by the thrice weekly administration and long half-life of azithromycin. For ∼37% of samples, antibiotics reported as taken by the individual were not detected by either instrument. Our results provide an approach for detecting a variety of antibiotics at the site of infection, thereby providing a means to include antibiotic usage data into microbiome studies.


Asunto(s)
Fibrosis Quística , Antibacterianos/uso terapéutico , Cromatografía Liquida , Fibrosis Quística/tratamiento farmacológico , Humanos , Espectrometría de Masas , Esputo
4.
Front Cell Infect Microbiol ; 10: 569685, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33123495

RESUMEN

In vitro infection models are important for studying the effects of antimicrobials on microbial growth and metabolism. However, many models lack important biological components that resemble the polymicrobial nature of chronic wounds or infections. In this study, we developed a perfused meat model that supports the growth of the human pathogen Pseudomonas aeruginosa in a native meat microbial background to investigate the impact of antibiotics and hydrogen peroxide on polymicrobial community growth and metabolism. P. aeruginosa plays an important role as an etiological agent involved in chronic infections and is a common opportunistic pathogen. Chemical stressors in the form of hydrogen peroxide, carbenicillin, and gentamicin were perfused through the meat with polymicrobial growth on the surface. The relative abundances of P. aeruginosa and the background microbial community were analyzed by cell viability assays, and metabolic changes of the entire community in response to different antimicrobial treatments were characterized by GC-MS analysis of volatile organic compounds. The meat background community was characterized by amplicon sequencing. Relative densities of P. aeruginosa and background microbiota were similar under control conditions. Antimicrobial stressors, even at sub-inhibitory, physiologically relevant concentrations, spurred P. aeruginosa dominance of the meat surface community. Volatile metabolite ion intensity levels showed that antibacterial treatments drive changes in microbial metabolism. The abundance of the P. aeruginosa-derived metabolite, acetophenone, remained stable with treatment, whereas the relative abundances of 2-butanone, 2-nonanone, and 2-aminoacetophenone changed in response to treatment, suggesting these could serve as biomarkers of infection. Our model recapitulates some of the physiological conditions of chronic wounds and facilitates high throughput experiments without the high cost of in vivo models. Expanded use of this perfusion model will contribute to the understanding of polymicrobial growth and metabolism in the context of chronic wounds and infections.


Asunto(s)
Antiinfecciosos , Microbiota , Infecciones por Pseudomonas , Antibacterianos/farmacología , Humanos , Infecciones por Pseudomonas/tratamiento farmacológico , Pseudomonas aeruginosa
5.
Cell Host Microbe ; 25(3): 377-388.e6, 2019 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-30850233

RESUMEN

Inflammatory bowel disease (IBD) is characterized by alterations in the intestinal microbiota and altered immune responses to gut microbiota. Evidence is accumulating that IBD is influenced by not only commensal bacteria but also commensal fungi. We characterized fungi directly associated with the intestinal mucosa in healthy people and Crohn's disease patients and identified fungi specifically abundant in patients. One of these, the common skin resident fungus Malassezia restricta, is also linked to the presence of an IBD-associated polymorphism in the gene for CARD9, a signaling adaptor important for anti-fungal defense. M. restricta elicits innate inflammatory responses largely through CARD9 and is recognized by Crohn's disease patient anti-fungal antibodies. This yeast elicits strong inflammatory cytokine production from innate cells harboring the IBD-linked polymorphism in CARD9 and exacerbates colitis via CARD9 in mouse models of disease. Collectively, these results suggest that targeting specific commensal fungi may be a therapeutic strategy for IBD.


Asunto(s)
Colitis/patología , Colitis/fisiopatología , Enfermedad de Crohn/patología , Enfermedad de Crohn/fisiopatología , Tracto Gastrointestinal/microbiología , Malassezia/crecimiento & desarrollo , Malassezia/aislamiento & purificación , Animales , Proteínas Adaptadoras de Señalización CARD/metabolismo , Citocinas/metabolismo , Modelos Animales de Enfermedad , Ratones
6.
PLoS Pathog ; 14(9): e1007260, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-30235351

RESUMEN

The gastrointestinal microbiota influences immune function throughout the body. The gut-lung axis refers to the concept that alterations of gut commensal microorganisms can have a distant effect on immune function in the lung. Overgrowth of intestinal Candida albicans has been previously observed to exacerbate allergic airways disease in mice, but whether subtler changes in intestinal fungal microbiota can affect allergic airways disease is less clear. In this study we have investigated the effects of the population expansion of commensal fungus Wallemia mellicola without overgrowth of the total fungal community. Wallemia spp. are commonly found as a minor component of the commensal gastrointestinal mycobiota in both humans and mice. Mice with an unaltered gut microbiota community resist population expansion when gavaged with W. mellicola; however, transient antibiotic depletion of gut microbiota creates a window of opportunity for expansion of W. mellicola following delivery of live spores to the gastrointestinal tract. This phenomenon is not universal as other commensal fungi (Aspergillus amstelodami, Epicoccum nigrum) do not expand when delivered to mice with antibiotic-depleted microbiota. Mice with Wallemia-expanded gut mycobiota experienced altered pulmonary immune responses to inhaled aeroallergens. Specifically, after induction of allergic airways disease with intratracheal house dust mite (HDM) antigen, mice demonstrated enhanced eosinophilic airway infiltration, airway hyperresponsiveness (AHR) to methacholine challenge, goblet cell hyperplasia, elevated bronchoalveolar lavage IL-5, and enhanced serum HDM IgG1. This phenomenon occurred with no detectable Wallemia in the lung. Targeted amplicon sequencing analysis of the gastrointestinal mycobiota revealed that expansion of W. mellicola in the gut was associated with additional alterations of bacterial and fungal commensal communities. We therefore colonized fungus-free Altered Schaedler Flora (ASF) mice with W. mellicola. ASF mice colonized with W. mellicola experienced enhanced severity of allergic airways disease compared to fungus-free control ASF mice without changes in bacterial community composition.


Asunto(s)
Basidiomycota/inmunología , Basidiomycota/patogenicidad , Microbioma Gastrointestinal/inmunología , Micobioma/inmunología , Hipersensibilidad Respiratoria/etiología , Alérgenos/administración & dosificación , Animales , Antibacterianos/efectos adversos , Antígenos Dermatofagoides/administración & dosificación , Basidiomycota/crecimiento & desarrollo , Modelos Animales de Enfermedad , Microbiología Ambiental , Femenino , Microbioma Gastrointestinal/efectos de los fármacos , Microbioma Gastrointestinal/genética , Vida Libre de Gérmenes/inmunología , Humanos , Ratones , Ratones Endogámicos C57BL , Micobioma/genética , Hipersensibilidad Respiratoria/inmunología , Hipersensibilidad Respiratoria/microbiología , Simbiosis/inmunología
7.
Cell Host Microbe ; 19(6): 865-73, 2016 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-27237365

RESUMEN

Compared to bacteria, the role of fungi within the intestinal microbiota is poorly understood. In this study we investigated whether the presence of a "healthy" fungal community in the gut is important for modulating immune function. Prolonged oral treatment of mice with antifungal drugs resulted in increased disease severity in acute and chronic models of colitis, and also exacerbated the development of allergic airway disease. Microbiota profiling revealed restructuring of fungal and bacterial communities. Specifically, representation of Candida spp. was reduced, while Aspergillus, Wallemia, and Epicoccum spp. were increased. Oral supplementation with a mixture of three fungi found to expand during antifungal treatment (Aspergillus amstelodami, Epicoccum nigrum, and Wallemia sebi) was sufficient to recapitulate the exacerbating effects of antifungal drugs on allergic airway disease. Taken together, these results indicate that disruption of commensal fungal populations can influence local and peripheral immune responses and enhance relevant disease states.


Asunto(s)
Antifúngicos/efectos adversos , Disbiosis/inducido químicamente , Disbiosis/inmunología , Hongos/efectos de los fármacos , Hongos/inmunología , Intestinos/microbiología , Anfotericina B/efectos adversos , Anfotericina B/farmacología , Animales , Antifúngicos/farmacología , Bacterias/efectos de los fármacos , Secuencia de Bases , Colitis/inmunología , Colitis/microbiología , Suplementos Dietéticos , Hipersensibilidad a las Drogas/inmunología , Hipersensibilidad a las Drogas/microbiología , Fluconazol/efectos adversos , Fluconazol/farmacología , Hongos/genética , Microbioma Gastrointestinal/efectos de los fármacos , Microbioma Gastrointestinal/inmunología , Hipersensibilidad/inmunología , Hipersensibilidad/microbiología , Ratones , Ratones Endogámicos C57BL
8.
PLoS One ; 11(4): e0153185, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27055018

RESUMEN

Stromal cells with a myofibroblast phenotype present in the normal human esophagus are increased in individuals with gastro-esophageal reflux disease (GERD). We have previously demonstrated that myofibroblasts stimulated with acid and TLR4 agonists increase IL-6 and IL-8 secretion using primary cultures of myofibroblasts established from normal human esophagus. While primary cultures have the advantage of reflecting the in vivo environment, a short life span and unavoidable heterogeneity limits the usefulness of this model in larger scale in vitro cellular signaling studies. The major aim of this paper therefore was to generate a human esophageal myofibroblast line with an extended lifespan. In the work presented here we have generated and characterized an immortalized human esophageal myofibroblast line by transfection with a commercially available GFP-hTERT lentivirus. Immortalized human esophageal myofibroblasts demonstrate phenotypic, genotypic and functional similarity to primary cultures of esophageal myofibroblasts we have previously described. We found that immortalized esophageal myofibroblasts retain myofibroblast spindle-shaped morphology at low and high confluence beyond passage 80, and express α-SMA, vimentin, and CD90 myofibroblast markers. Immortalized human esophageal myofibroblasts also express the putative acid receptor TRPV1 and TLR4 and retain the functional capacity to respond to stimuli encountered in GERD with secretion of IL-6. Finally, immortalized human esophageal myofibroblasts also support the stratified growth of squamous esophageal epithelial cells in 3D organotypic cultures. This newly characterized immortalized human esophageal myofibroblast cell line can be used in future cellular signaling and co-culture studies.


Asunto(s)
Biomarcadores/análisis , Línea Celular Transformada/citología , Esófago/citología , Reflujo Gastroesofágico , Miofibroblastos/citología , Western Blotting , Línea Celular Transformada/metabolismo , Células Cultivadas , Técnicas de Cocultivo , Citocinas/genética , Citocinas/metabolismo , Esófago/metabolismo , Técnica del Anticuerpo Fluorescente , Humanos , Técnicas para Inmunoenzimas , Miofibroblastos/metabolismo , Fenotipo , ARN Mensajero/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
9.
Am J Physiol Gastrointest Liver Physiol ; 308(11): G904-23, 2015 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-25882613

RESUMEN

The pathophysiology of esophageal injury, repair, and inflammation in gastroesophageal reflux-disease (GERD) is complex. Whereas most studies have focused on the epithelial response to GERD injury, we are interested in the stromal response. We hypothesized that subepithelial esophageal myofibroblasts in GERD secrete proinflammatory cytokines in response to injurious agents encountered via epithelial barrier breaches or through dilated epithelial intercellular spaces. We determined the percentage of myofibroblasts [-smooth muscle actin (-SMA)+vimentin+CD31-] in the subepithelial GERD and normal esophageal stroma by immunomorphologic analysis. We performed -SMA coimmunostaining with IL-6 and p65. We established and characterized primary cultures of -SMA+vimentin+CD31-CD45- human esophageal myofibroblasts (HuEso MFs). We modeled GERD by treatment with pH 4.5-acidified media and Toll-like receptor 4 (TLR4) ligands, LPS and high-mobility group box 1 protein (HMGB1), and determined myofibroblast cytokine secretion in response to GERD injury. We demonstrate that spindle-shaped cell myofibroblasts are located near the basement membrane of stratified squamous epithelium in normal esophagus. We identify an increase in subepithelial myofibroblasts and activation of proinflammatory pathways in patients with GERD. Primary cultures of stromal cells obtained from normal esophagus retain myofibroblast morphology and express the acid receptor transient receptor potential channel vanilloid subfamily 1 (TRPV1) and TLR4. HuEso MFs stimulated with acid and TLR4 agonists LPS and HMGB1 increase IL-6 and IL-8 secretion via TRPV1 and NF-B activation. Our work implicates a role for human subepithelial stromal cells in the pathogenesis of GERD-related esophageal injury. Findings of this study can be extended to the investigation of epithelial-stromal interactions in inflammatory esophageal mucosal disorders.


Asunto(s)
Actinas/metabolismo , Esófago , Reflujo Gastroesofágico , Interleucina-6 , Interleucina-8 , Miofibroblastos , Receptor Toll-Like 4/metabolismo , Membrana Basal/metabolismo , Membrana Basal/patología , Técnicas de Cultivo de Célula , Esófago/metabolismo , Esófago/patología , Reflujo Gastroesofágico/metabolismo , Reflujo Gastroesofágico/patología , Proteína HMGB1/metabolismo , Humanos , Inflamación/metabolismo , Interleucina-6/metabolismo , Interleucina-8/metabolismo , Miofibroblastos/metabolismo , Miofibroblastos/patología , Molécula-1 de Adhesión Celular Endotelial de Plaqueta/metabolismo , Estimulación Química , Vimentina/metabolismo
10.
J Vis Exp ; (95): 52215, 2015 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-25650889

RESUMEN

Murine and human esophageal myofibroblasts are generated via enzymatic digestion. Neonate (8-12 day old) murine esophagus is harvested, minced, washed, and subjected to enzymatic digestion with collagenase and dispase for 25 min. Human esophageal resection specimens are stripped of muscularis propria and adventitia and the remaining mucosa is minced, and subjected to enzymatic digestion with collagenase and dispase for up to 6 hr. Cultured cells express α-SMA and vimentin and express desmin weakly or not at all. Culture conditions are not conducive to growth of epithelial, hematopoietic, or endothelial cells. Culture purity is further confirmed by flow cytometric evaluation of cell surface marker expression of potential contaminating hematopoietic and endothelial cells. The described technique is straightforward and results in consistent generation of non-hematopoieitc, non-endothelial stromal cells. Limitations of this technique are inherent to the use of primary cultures in molecular biology studies, i.e., the unavoidable variability encountered among cultures established across different mice or humans. Primary cultures however are a more representative reflection of the in vivo state compared to cell lines. These methods also provide investigators the ability to isolate and culture stromal cells from different clinical and experimental conditions, allowing comparisons between groups. Characterized esophageal stromal cells can also be used in functional studies investigating epithelial-stromal interactions in esophageal disorders.


Asunto(s)
Esófago/citología , Miofibroblastos/citología , Actinas/biosíntesis , Animales , Biomarcadores/metabolismo , Línea Celular , Técnicas Citológicas/métodos , Desmina/biosíntesis , Esófago/metabolismo , Humanos , Ratones , Músculo Liso/citología , Músculo Liso/metabolismo , Miofibroblastos/metabolismo , Fenotipo , Células del Estroma/citología , Células del Estroma/metabolismo , Vimentina/biosíntesis
11.
Transl Res ; 164(1): 70-83, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24731292

RESUMEN

Epimorphin (Epim), a member of the syntaxin family of membrane-bound, intracellular vesicle-docking proteins, is expressed in intestinal myofibroblasts and macrophages. We demonstrated previously that Epimorphin(-/-)(Epim(-/-)) mice are protected, in part, from dextran sodium sulfate (DSS)-induced colitis. Although interleukin (IL)-6/p-Stat3 signaling has been implicated in the pathogenesis of colitis, the myofibroblast contribution to IL-6 signaling in colitis remains unexplored. Our aim was to investigate the IL-6 pathway in Epim(-/-) mice in the DSS colitis model. Whole colonic tissue, epithelium, and stroma of WT and congenic Epim(-/-) mice treated with 5% DSS for 7 days were analyzed for IL-6 and a downstream effector, p-Stat3, by immunostaining and immunoblot. Colonic myofibroblast and peritoneal macrophage IL-6 secretion were evaluated by enzyme-linked immunosorbent assay. IL-6 and p-Stat3 expression were decreased in Epim(-/-) vs WT colon. A relative increase in stromal vs epithelial p-Stat3 expression was observed in WT mice but not in Epim(-/-) mice. Epim deletion abrogates IL-6 secretion from colonic myofibroblasts treated with IL-1ß and decreases IL-6 secretion from peritoneal macrophages in a subset of DSS-treated mice. Epim deletion inhibits IL-6 secretion most profoundly from colonic myofibroblasts. Distribution of Stat3 activation is altered in DSS-treated Epim(-/-) mice. Our findings support the notion that myofibroblasts modulate IL-6/p-Stat3 signaling in DSS-treated Epim(-/-) mice.


Asunto(s)
Colitis/inducido químicamente , Interleucina-6/metabolismo , Glicoproteínas de Membrana/metabolismo , Transducción de Señal , Animales , Sulfato de Dextran/toxicidad , Regulación de la Expresión Génica/fisiología , Interleucina-6/genética , Mucosa Intestinal/patología , Masculino , Glicoproteínas de Membrana/genética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...