Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Phys Condens Matter ; 28(12): 125601, 2016 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-26912417

RESUMEN

Electron spin resonance (ESR) of diluted Nd(3+) ions in the topologically nontrivial semimetallic (TNSM) YBiPt compound is reported. The cubic YBiPt compound is a non-centrosymmetric half Heusler material which crystallizes in the F43m space group. The low temperature Nd(3+) ESR spectra showed a g-value of 2.66(4) corresponding to a Γ6 cubic crystal field Kramers' doublet ground state. Remarkably, the observed metallic and diffusive (Dysonian) Nd(3+) lineshape presented an unusual dependence with grain size, microwave power, Nd(3+) concentration and temperature. Moreover, the spin dynamic of the localized Nd(3+) ions in YBiPt was found to be characteristic of a phonon-bottleneck regime. It is claimed that, in this regime for YBiPt, phonons are responsible for mediating the diffusion of the microwave energy absorbed at resonance by the Nd(3+) ions to the thermal bath throughout the skin depth (δ ≃ µm). We argue that this is only possible because of the existence of highly mobile conduction electrons inside the skin depth of YBiPt that are strongly coupled to the phonons by spin-orbit coupling. Therefore, our unexpected ESR results point to a coexistence of metallic and insulating behaviors within the skin depth of YBiPt. This scenario is discussed in the light of the TNSM properties of this compound.

2.
Phys Rev Lett ; 107(26): 267402, 2011 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-22243180

RESUMEN

The Fe K x-ray absorption near edge structure of BaFe(2-x)Co(x)As(2) superconductors was investigated. No appreciable alteration in shape or energy position of this edge was observed with Co substitution. This result provides experimental support to previous ab initio calculations in which the extra Co electron is concentrated at the substitute site and do not change the electronic occupation of the Fe ions. Superconductivity may emerge due to bonding modifications induced by the substitute atom that weakens the spin-density-wave ground state by reducing the Fe local moments and/or increasing the elastic energy penalty of the accompanying orthorhombic distortion.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA