Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Chemistry ; 30(26): e202304145, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38433113

RESUMEN

Chemical reduction of a [4]cumulene with cesium metal was explored, and the structural changes stemming from electron acquisition are detailed using X-ray crystallography. It is found that the [4]cumulene undergoes dramatic geometric changes upon stepwise reduction, including bending of the cumulenic core and twisting of the endgroups from orthogonal to planar. The structural deformation is consistent with early theoretical reports that suggest that the twisting should occur upon reduction of both even and odd [n]cumulenes. The current results, on the other hand, are inconsistent with a previous experimental study of a [3]cumulene in which the predicted twisting is not observed upon reduction. DFT calculations reveal that the barrier to deformation is an order of magnitude lower in a [3]cumulene than a [4]cumulene, allowing the barrier to be overcome in the solid-state.

2.
Chem Commun (Camb) ; 60(15): 2070-2073, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38291965

RESUMEN

Inverted singlet-triplet gaps may lead to novel molecular emitters if a rational design approach can be achieved. We uncover a substituent strategy that enables tuning of the gap and succeed in inducing inversion in near-gapless molecules. Based on known inverted-gap emitters, we design substituted analogs with even more negative singlet-triplet gaps than in the parent systems. The inversion is lost if the reverse substituent-strategy is used. We thus demonstrate a definite set of conceptual design rules for inverted gap molecules.

3.
Chem Sci ; 14(38): 10458-10466, 2023 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-37800005

RESUMEN

Molecules where the first excited singlet state is lower in energy than the first excited triplet state have the potential to revolutionize OLEDs. This inverted singlet-triplet gap violates Hund's rule and currently there are only a few molecules which are known to have this property. Here, we screen the complete set of non-alternant hydrocarbons consisting of 5-, 6-, 7-membered rings fused into two-, three- and four-ring polycyclic systems. We identify several molecules where the symmetry of the ground-state structure is broken due to bond-length alternation. Through symmetry-constrained optimizations we identify several molecular cores where the singlet-triplet gap is inverted when the structure is in a higher symmetry, pentalene being a known example. We uncover a strategy to stabilize the molecular cores into their higher-symmetry structures with electron donors or acceptors. We design several substituted pentalenes, s-indacenes, and indeno[1,2,3-ef]heptalenes with inverted gaps, among which there are several synthetically known examples. In contrast to known inverted gap emitters, we identify the double-bond delocalized structure of their conjugated cores as the necessary condition to achieve the inverted gap. This strategy enables chemical tuning and paves the way for the rational design of polycyclic hydrocarbons with inverted singlet-triplet gaps. These molecules are prospective emitters if their properties can be optimized for use in OLEDs.

4.
Phys Chem Chem Phys ; 25(22): 15200-15208, 2023 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-37232016

RESUMEN

Electrohelicity arises in molecules such as allene and spiropentadiene when their symmetry is reduced and helical frontier molecular orbitals (MOs) appear. Such molecules are optically active and electrohelicity has been suggested as a possible design principle for increasing the chiroptical response. Here we examine the fundamental link between electrohelicity and optical activity by studying the origin of the electric and magnetic transition dipole moments of the π-π* transitions. We show that the helical character of the MOs drives the optical activity in allene, and we use this knowledge to design allenic molecules with increased chiroptical response. We further examine longer carbyne-like molecules. While the MO helicity also contributes to the optical activity in non-planar butatriene, the simplest cumulene, we show there is no relation between the chiroptical response and the helical π-MOs of tolane, a simple polyyne. Finally, we demonstrate that the optical activity of spiropentadiene is inherently linked to mixing of its two π-systems rather than the helical shape of its occupied π-MOs. We thus find that the fundamental connection between electrohelicity and optical activity is very molecule dependent. Although electrohelicity is not the underlying principle, we show that the chiroptical response can be enhanced through insight into the helical nature of electronic transitions.

5.
Angew Chem Int Ed Engl ; 62(15): e202218156, 2023 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-36786076

RESUMEN

Molecules with inversion of the singlet and triplet excited-state energies are highly promising for the development of organic light-emitting diodes (OLEDs). To date, azaphenalenes are the only class of molecules where these inversions have been identified. Here, we screen a curated database of organic crystal structures to identify existing compounds for violations of Hund's rule in the lowest excited states. We identify two further classes with this behavior. The first, a class of zwitterions, has limited relevance to molecular emitters as the singlet-triplet inversions occur in the third excited singlet state. The second class consists of two D2h -symmetry non-alternant hydrocarbons, a fused azulene dimer and a bicalicene, whose lowest excited singlet states violate Hund's rule. Due to the connectivity of the polycyclic structure, they achieve this symmetry through aromatic stabilization. These hydrocarbons show promise as the next generation of building blocks for OLED emitters.

6.
Phys Chem Chem Phys ; 24(42): 26134-26143, 2022 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-36278432

RESUMEN

The allene radical cation can be stabilized both by Jahn-Teller distortion of the bond lengths and by torsion of the end-groups. However, only the latter happens and the allene radical cation relaxes into a twisted D2 symmetry structure with equal double-bond lengths. Here we revisit the Jahn-Teller distortion of allene and spiropentadiene by assessing the possible implications of their helical π-systems in the radical cations. We describe a general relation between the structure and the number of π-electrons in spiroconjugated and linearly conjugated systems. Through constrained optimizations we compare the stabilization achieved by bond-length alternation and axial torsion in the radical cations, which we explain with a simple frontier molecular orbital (MO) picture. While structurally different, allene and spiropentadiene have similar helical frontier MOs. Both cations relax through torsion because the stabilization of their helical frontier MOs is bigger than that which can be achieved by linear π-conjugation. Electrohelicity thus manifests in molecular systems with partial occupation as a helical π-conjugation effect, which evidently provides more stabilization than its linear counterpart in terms of the Jahn-Teller distortion. This mechanism may be a driving factor for the relaxation in a range of spiroconjugated and linearly conjugated cationic systems.

7.
ACS Phys Chem Au ; 2(4): 282-288, 2022 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-36855417

RESUMEN

The single-molecule conductance of saturated molecules can potentially be fully suppressed by destructive quantum interference in their σ-system. However, only few molecules with σ-interference have been identified, and the structure-property relationship remains to be elucidated. Here, we explore the role of substituents in modulating the electronic transmission of saturated molecules. In functionalized bicyclo[2.2.2]octanes, the transmission is suppressed by σ-interference when fluorine substituents are applied. For bicyclo[2.2.2]octasilane and -octagermanes, the transmission is suppressed when carbon-based substituents are used, and such molecules are likely to be highly insulating. For the carbon-based substituents, we find a strong correlation between the appropriate Hammett constants and the transmission. The substituent effect enables systematic optimization of the insulating properties of saturated molecular cores.

8.
J Phys Chem A ; 125(36): 8107-8115, 2021 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-34491758

RESUMEN

The frontier molecular orbital (MO) topology of linear carbon molecules, such as polyynes, can be visually identified as helices. However, there is no clear way to quantify the helical curvature of these π-MOs, and it is thus challenging to quantify correlations between the helical curvature and molecular properties. In this paper, we develop a method that enables us to compute the helical curvature of MOs based on their nodal planes. Using this method, we define a robust way of quantifying the helical nature of MOs (helicality) by their deviation from a perfect helix. We explore several limiting cases, including polyynes, metallacumulenes, cyclic allenes, and spiroconjugated systems, where the change in helical curvature is subtle yet clearly highlighted with this method. For example, we show that strain only has a minor effect on the helicality of the frontier orbitals of cycloallenes and that the MOs of spiroconjugated systems are close to perfect helices around the spiro-carbon. Our work provides a well-defined method for assessing orbital helicality beyond visual inspection of MO isosurfaces, thus paving the way for future studies of how the helicality of π-MOs affects molecular properties.

9.
Chem Sci ; 12(30): 10299-10305, 2021 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-34476051

RESUMEN

Designing highly insulating sub-nanometer molecules is difficult because tunneling conductance increases exponentially with decreasing molecular length. This challenge is further enhanced by the fact that most molecules cannot achieve full conductance suppression with destructive quantum interference. Here, we present results for a series of small saturated heterocyclic alkanes where we show that conductance is suppressed due to destructive interference. Using the STM-BJ technique and density functional theory calculations, we confirm that their single-molecule junction conductance is lower than analogous alkanes of similar length. We rationalize the suppression of conductance in the junctions through analysis of the computed ballistic current density. We find there are highly symmetric ring currents, which reverse direction at the antiresonance in the Landauer transmission near the Fermi energy. This pattern has not been seen in earlier studies of larger bicyclic systems exhibiting interference effects and constitutes clear-cut evidence of destructive σ-interference. The finding of heterocyclic alkanes with destructive quantum interference charts a pathway for chemical design of short molecular insulators using organic molecules.

10.
Chem Commun (Camb) ; 57(52): 6408-6411, 2021 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-34086022

RESUMEN

The two π-systems of allene can combine into helical molecular orbitals (MOs), yet the helicity is lost in the π-π* transitions due to excited state mixing. In spiroconjugated molecules the relative orientation of the two π-systems is different and consequently only half the π-MOs become helical. We show that the helicity of the electronic transitions of methyl-substituted spiropentadiene is symmetry protected. As a result, helical π-conjugation can manifest in observable electronic and chiroptical properties.

11.
Nano Lett ; 21(1): 673-679, 2021 01 13.
Artículo en Inglés | MEDLINE | ID: mdl-33337876

RESUMEN

Probing structural changes of a molecule induced by charge transfer is important for understanding the physicochemical properties of molecules and developing new electronic devices. Here, we interrogate the structural changes of a single diketopyrrolopyrrole (DPP) molecule induced by charge transport at a high bias using scanning tunneling microscope break junction (STM-BJ) techniques. Specifically, we demonstrate that application of a high bias increases the average nonresonant conductance of single Au-DPP-Au junctions. We infer from the increased conductance that resonant charge transport induces planarization of the molecular backbone. We further show that this conformational planarization is assisted by thermally activated junction reorganization. The planarization only occurs under specific electronic conditions, which we rationalize by ab initio calculations. These results emphasize the need for a comprehensive view of single-molecule junctions which includes both the electronic properties and structure of the molecules and the electrodes when designing electrically driven single-molecule motors.

12.
Org Lett ; 22(20): 8028-8033, 2020 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-32996767

RESUMEN

Helical frontier molecular orbitals (MOs) appear in disubstituted allenes and even-n cumulenes. Chiral molecules are optically active, but while these molecules are single-handed chiral, π-orbitals of both helicities are present. Here we computationally examine whether the optical activity of chiral cumulenes is controlled by the axial chirality or the helicity of the electronic structure. We exploit hyperconjugation with alkyl, silaalkyl, and germaalkyl substituents to adjust the MO helicity without altering the axial chirality. For the same axial chirality, we observe an inversion of the helical MOs contribution to the electronic transitions and a change of sign in the electronic circular dichroism and optical rotation dispersion spectra. While the magnitude of the chiroptical response also increases, it is similar to that of chiral cumulenes without helical π-orbitals. Overall, helical π-orbitals correlate with the big chiroptical response in cumulenes, but are not a prerequisite for it.

13.
J Phys Chem Lett ; 11(17): 7400-7406, 2020 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-32787288

RESUMEN

Molecular dielectric materials require ostensibly conflicting requirements of high polarizability and low conductivity. As previous efforts toward molecular insulators focused on saturated molecules, it remains an open question whether π- and σ-transport can be simultaneously suppressed in conjugated systems. Here, we demonstrate that there are conjugated molecules where the σ-transmission is suppressed by destructive σ-interference, while the π-transmission can be suppressed by a localized disruption of conjugation. Using density functional theory, we study the Landauer transmission and ballistic current density, which allow us to determine how the transmission is affected by various structural changes in the molecule. We find that in para-linked oligophenyl rings the σ-transmission can be suppressed by changing the remaining hydrogens to methyl groups due to the inherent gauche-like structure of the carbon backbone within a benzene ring, similar to what was previously seen in saturated systems. At the same time, the methyl groups fulfill a dual purpose as they modulate the twist angle between neighboring phenyl rings. When neighboring rings are orthogonal to each other, the transmission through both π- and σ-systems is effectively suppressed. Alternatively, breaking conjugation in a single phenyl ring by saturating two carbons atoms with two methyl substituents on each carbon, results in suppressed π- and σ-transport independent of dihedral angle. These two strategies demonstrate that methyl-substituted oligophenyls are promising candidates for the development of molecular dielectric materials.

14.
J Am Chem Soc ; 141(39): 15471-15476, 2019 10 02.
Artículo en Inglés | MEDLINE | ID: mdl-31500410

RESUMEN

The single-molecule conductance of silanes is suppressed due to destructive quantum interference in conformations with cisoid dihedral angles along the molecular backbone. Yet, despite the structural similarity, σ-interference effects have not been observed in alkanes. Here we report that the methyl substituents used in silanes are a prerequisite for σ-interference in these systems. Through density functional theory calculations, we find that the destructive interference is not evident to the same extent in nonmethylated silanes. We find the same is true in alkanes as the transmission is significantly suppressed in permethylated cyclic and bicyclic alkanes. Using scanning tunneling microscope break-junction method we determine the single-molecule conductance of functionalized cyclohexane and bicyclo[2.2.2]octane that are found to be higher than that of equivalent permethylated silanes. Rather than the difference between carbon and silicon atoms in the molecular backbones, our calculations reveal that it is primarily the difference between hydrogen and methyl substituents that result in the different electron transport properties of nonmethylated alkanes and permethylated silanes. Chemical substituents play an important role in determining the single-molecule conductance of saturated molecules, and this must be considered when we improve and expand the chemical design of insulating organic molecules.

15.
Chem Sci ; 10(17): 4598-4608, 2019 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-31123570

RESUMEN

Disubstituted odd-carbon cumulenes are linear carbon wires with near-degenerate helical π-orbitals. Such cumulenes are chiral molecules but their electronic structure consists of helical orbitals of both chiralities. For these helical molecular orbitals to give rise to experimentally observable effects, the near-degenerate orbitals of opposite helicities must be split. Here we show how pyramidalized single-faced π-donors, such as the amine substituent, provide a strategy for splitting the helical molecular orbitals. The chirality induced by the amine substituents allow for systematic control of the helicity of the frontier orbitals. We examine how the helical orbitals in odd-carbon cumulenes control the coherent electron transport properties, and we explicitly predict two modes in the experimental single-molecule conductance for these molecules. We also show that the current density through these linear wires exhibits strong circular currents. The direction of the circular currents is systematically controlled by the helicity of the frontier molecular orbitals, and is therefore altered by changing between the conformations of the molecule. Furthermore, the circular currents are subject to a full ring-reversal around antiresonances in the Landauer transmission, emphasizing the relation to destructive quantum interference. With circular currents present around truly linear carbon wires, cumulenes are promising candidates for novel applications in molecular electronics.

16.
J Phys Chem Lett ; 9(24): 6941-6947, 2018 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-30484655

RESUMEN

The electronic transmission through σ-conjugated molecules can be fully suppressed by destructive quantum interference, which makes them potential candidates for single-molecule insulators. The first molecule with clear suppression of the single-molecule conductance due to σ-interference was recently found in the form of a functionalized bicyclo[2.2.2]octasilane. Here we continue the search for potential single-molecule insulators based on saturated group 14 molecules. Using a high-throughput screening approach, we assess the electron transport properties of the bicyclo[2.2.2]octane class by systematically varying the constituent atoms between carbon, silicon, and germanium, thus exploring the full chemical space of 771 different molecules. The majority of the molecules in the bicyclo[2.2.2]octane class are found to be highly insulating molecules. Though the all-silicon molecule is a clear-cut case of σ-interference, it is not unique within its class and there are many potential molecules that we predict to be more insulating. The finding of this class of quantum interference based single-molecule insulators indicates that a broad range of highly insulating saturated group 14 molecules are likely to exist.

17.
J Am Chem Soc ; 140(41): 13167-13170, 2018 10 17.
Artículo en Inglés | MEDLINE | ID: mdl-30280891

RESUMEN

We study the single-molecule transport properties of small bandgap diketopyrrolopyrrole oligomers (DPP n, n = 1-4) with lengths varying from 1 to 5 nm. At a low bias voltage, the conductance decays exponentially as a function of length indicative of nonresonant transport. However, at a high bias voltage, we observe a remarkably high conductance close to 10-2 G0 with currents reaching over 0.1 µA across all four oligomers. These unique transport properties, together with density functional theory-based transport calculations, suggest a mechanism of resonant transport across the highly delocalized DPP backbones in the high bias regime. This study thus demonstrates the unique properties of diketopyrrolopyrrole derivatives in achieving highly efficient long-range charge transport in single-molecule devices.

18.
J Am Chem Soc ; 140(44): 15080-15088, 2018 11 07.
Artículo en Inglés | MEDLINE | ID: mdl-30372051

RESUMEN

Linear silanes are efficient molecular wires due to strong σ-conjugation in the transoid conformation; however, the structure-function relationship for the conformational dependence of the single-molecule conductance of silanes remains untested. Here we report the syntheses, electrical measurements, and theoretical characterization of four series of functionalized cyclic and bicyclic silanes including a cyclotetrasilane, a cyclopentasilane, a bicyclo[2.2.1]heptasilane, and a bicyclo[2.2.2]octasilane, which are all extended by linear silicon linkers of varying length. We find an unusual variation of the single-molecule conductance among the four series at each linker length. We determine the relative conductance of the (bi)cyclic silicon structures by using the common length dependence of the four series rather than comparing the conductance at a single length. In contrast with the cyclic π-conjugated molecules, the conductance of σ-conjugated (bi)cyclic silanes is dominated by a single path through the molecule and is controlled by the dihedral angles along this path. This strong sensitivity to molecular conformation dictates the single-molecule conductance of σ-conjugated silanes and allows for systematic control of the conductance through molecular design.

19.
ACS Cent Sci ; 4(6): 688-700, 2018 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-29974064

RESUMEN

As brought to the attention of the community by Hendon et al. and noted by previous workers, the π orbitals of the equilibrium geometry odd-carbon (even number of double bonds = n) [n]cumulenes may be written in either rectilinear or helical form. We trace the origins and detailed composition of the helical orbitals of cumulenes, which emerge in the simplest Hückel model and are not much modified in advanced computations. For the α,ω-disubstituted even [n]cumulenes, the helical representation is obligatory as the symmetry is reduced from D2d to C2. A relationship is apparent between these helical orbitals of the even [n]cumulenes, seen as a Herges coarctate system, and the corresponding Möbius cyclic polyene orbitals. The twist of the orbitals varies in interesting ways along the helix, and so does the contribution of the component atomic orbitals. Though the electronic structures of even [n]cumulenes and Möbius cyclopolyenes are closely related, they differ for higher n in intriguing ways; these are linked to the constrained rotation of the basis orbitals along the helical twist itinerary. Relations are constructed between the level patterns of the π-systems of even [n]cumulenes and ideas of Hückel and Möbius aromaticity.

20.
Nature ; 558(7710): 415-419, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29875407

RESUMEN

The tunnelling of electrons through molecules (and through any nanoscale insulating and dielectric material 1 ) shows exponential attenuation with increasing length 2 , a length dependence that is reflected in the ability of the electrons to carry an electrical current. It was recently demonstrated3-5 that coherent tunnelling through a molecular junction can also be suppressed by destructive quantum interference 6 , a mechanism that is not length-dependent. For the carbon-based molecules studied previously, cancelling all transmission channels would involve the suppression of contributions to the current from both the π-orbital and σ-orbital systems. Previous reports of destructive interference have demonstrated a decrease in transmission only through the π-channel. Here we report a saturated silicon-based molecule with a functionalized bicyclo[2.2.2]octasilane moiety that exhibits destructive quantum interference in its σ-system. Although molecular silicon typically forms conducting wires 7 , we use a combination of conductance measurements and ab initio calculations to show that destructive σ-interference, achieved here by locking the silicon-silicon bonds into eclipsed conformations within a bicyclic molecular framework, can yield extremely insulating molecules less than a nanometre in length. Our molecules also exhibit an unusually high thermopower (0.97 millivolts per kelvin), which is a further experimental signature of the suppression of all tunnelling paths by destructive interference: calculations indicate that the central bicyclo[2.2.2]octasilane unit is rendered less conductive than the empty space it occupies. The molecular design presented here provides a proof-of-concept for a quantum-interference-based approach to single-molecule insulators.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...