Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
1.
Transl Psychiatry ; 14(1): 109, 2024 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-38395906

RESUMEN

Lithium is the gold standard treatment for bipolar disorder (BD). However, its mechanism of action is incompletely understood, and prediction of treatment outcomes is limited. In our previous multi-omics study of the Pharmacogenomics of Bipolar Disorder (PGBD) sample combining transcriptomic and genomic data, we found that focal adhesion, the extracellular matrix (ECM), and PI3K-Akt signaling networks were associated with response to lithium. In this study, we replicated the results of our previous study using network propagation methods in a genome-wide association study of an independent sample of 2039 patients from the International Consortium on Lithium Genetics (ConLiGen) study. We identified functional enrichment in focal adhesion and PI3K-Akt pathways, but we did not find an association with the ECM pathway. Our results suggest that deficits in the neuronal growth cone and PI3K-Akt signaling, but not in ECM proteins, may influence response to lithium in BD.


Asunto(s)
Trastorno Bipolar , Litio , Humanos , Litio/farmacología , Litio/uso terapéutico , Trastorno Bipolar/tratamiento farmacológico , Trastorno Bipolar/genética , Proteínas Proto-Oncogénicas c-akt/genética , Fosfatidilinositol 3-Quinasas/genética , Estudio de Asociación del Genoma Completo , Multiómica , Adhesiones Focales
2.
J Affect Disord ; 351: 49-57, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38280568

RESUMEN

INTRODUCTION: Mnemonic discrimination (MD), the ability to discriminate new stimuli from similar memories, putatively involves dentate gyrus pattern separation. Since lithium may normalize dentate gyrus functioning in lithium-responsive bipolar disorder (BD), we hypothesized that lithium treatment would be associated with better MD in lithium-responsive BD patients. METHODS: BD patients (N = 69; NResponders = 16 [23 %]) performed the Continuous Visual Memory Test (CVMT), which requires discriminating between novel and previously seen images. Before testing, all patients had prophylactic lithium responsiveness assessed over ≥1 year of therapy (with the Alda Score), although only thirty-eight patients were actively prescribed lithium at time of testing (55 %; 12/16 responders, 26/53 nonresponders). We then used computational modelling to extract patient-specific MD indices. Linear models were used to test how (A) lithium treatment, (B) lithium responsiveness via the continuous Alda score, and (C) their interaction, affected MD. RESULTS: Superior MD performance was associated with lithium treatment exclusively in lithium-responsive patients (Lithium x AldaScore ß = 0.257 [SE 0.078], p = 0.002). Consistent with prior literature, increased age was associated with worse MD (ß = -0.03 [SE 0.01], p = 0.005). LIMITATIONS: Secondary pilot analysis of retrospectively collected data in a cross-sectional design limits generalizability. CONCLUSION: Our study is the first to examine MD performance in BD. Lithium is associated with better MD performance only in lithium responders, potentially due to lithium's effects on dentate gyrus granule cell excitability. Our results may influence the development of behavioural probes for dentate gyrus neuronal hyperexcitability in BD.


Asunto(s)
Trastorno Bipolar , Litio , Humanos , Litio/uso terapéutico , Litio/farmacología , Trastorno Bipolar/tratamiento farmacológico , Proyectos Piloto , Estudios Retrospectivos , Estudios Transversales , Compuestos de Litio/uso terapéutico
3.
Res Sq ; 2023 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-38077040

RESUMEN

Background: Lithium (Li) remains the treatment of choice for bipolar disorders (BP). Its mood-stabilizing effects help reduce the long-term burden of mania, depression and suicide risk in patients with BP. It also has been shown to have beneficial effects on disease-associated conditions, including sleep and cardiovascular disorders. However, the individual responses to Li treatment vary within and between diagnostic subtypes of BP (e.g. BP-I and BP-II) according to the clinical presentation. Moreover, long-term Li treatment has been linked to adverse side-effects that are a cause of concern and non-adherence, including the risk of developing chronic medical conditions such as thyroid and renal disease. In recent years, studies by the Consortium on Lithium Genetics (ConLiGen) have uncovered a number of genetic factors that contribute to the variability in Li treatment response in patients with BP. Here, we leveraged the ConLiGen cohort (N=2,064) to investigate the genetic basis of Li effects in BP. For this, we studied how Li response and linked genes associate with the psychiatric symptoms and polygenic load for medical comorbidities, placing particular emphasis on identifying differences between BP-I and BP-II. Results: We found that clinical response to Li treatment, measured with the Alda scale, was associated with a diminished burden of mania, depression, substance and alcohol abuse, psychosis and suicidal ideation in patients with BP-I and, in patients with BP-II, of depression only. Our genetic analyses showed that a stronger clinical response to Li was modestly related to lower polygenic load for diabetes and hypertension in BP-I but not BP-II. Moreover, our results suggested that a number of genes that have been previously linked to Li response variability in BP differentially relate to the psychiatric symptomatology, particularly to the numbers of manic and depressive episodes, and to the polygenic load for comorbid conditions, including diabetes, hypertension and hypothyroidism. Conclusions: Taken together, our findings suggest that the effects of Li on symptomatology and comorbidity in BP are partially modulated by common genetic factors, with differential effects between BP-I and BP-II.

4.
Res Sq ; 2023 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-37886563

RESUMEN

Lithium is the gold standard treatment for bipolar disorder (BD). However, its mechanism of action is incompletely understood, and prediction of treatment outcomes is limited. In our previous multi-omics study of the Pharmacogenomics of Bipolar Disorder (PGBD) sample combining transcriptomic and genomic data, we found that focal adhesion, the extracellular matrix (ECM), and PI3K-Akt signaling networks were associated with response to lithium. In this study, we replicated the results of our previous study using network propagation methods in a genome-wide association study of an independent sample of 2,039 patients from the International Consortium on Lithium Genetics (ConLiGen) study. We identified functional enrichment in focal adhesion and PI3K-Akt pathways, but we did not find an association with the ECM pathway. Our results suggest that deficits in the neuronal growth cone and PI3K-Akt signaling, but not in ECM proteins, may influence response to lithium in BD.

5.
Mol Psychiatry ; 2023 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-37433967

RESUMEN

Lithium is regarded as the first-line treatment for bipolar disorder (BD), a severe and disabling mental health disorder that affects about 1% of the population worldwide. Nevertheless, lithium is not consistently effective, with only 30% of patients showing a favorable response to treatment. To provide personalized treatment options for bipolar patients, it is essential to identify prediction biomarkers such as polygenic scores. In this study, we developed a polygenic score for lithium treatment response (Li+PGS) in patients with BD. To gain further insights into lithium's possible molecular mechanism of action, we performed a genome-wide gene-based analysis. Using polygenic score modeling, via methods incorporating Bayesian regression and continuous shrinkage priors, Li+PGS was developed in the International Consortium of Lithium Genetics cohort (ConLi+Gen: N = 2367) and replicated in the combined PsyCourse (N = 89) and BipoLife (N = 102) studies. The associations of Li+PGS and lithium treatment response - defined in a continuous ALDA scale and a categorical outcome (good response vs. poor response) were tested using regression models, each adjusted for the covariates: age, sex, and the first four genetic principal components. Statistical significance was determined at P < 0.05. Li+PGS was positively associated with lithium treatment response in the ConLi+Gen cohort, in both the categorical (P = 9.8 × 10-12, R2 = 1.9%) and continuous (P = 6.4 × 10-9, R2 = 2.6%) outcomes. Compared to bipolar patients in the 1st decile of the risk distribution, individuals in the 10th decile had 3.47-fold (95%CI: 2.22-5.47) higher odds of responding favorably to lithium. The results were replicated in the independent cohorts for the categorical treatment outcome (P = 3.9 × 10-4, R2 = 0.9%), but not for the continuous outcome (P = 0.13). Gene-based analyses revealed 36 candidate genes that are enriched in biological pathways controlled by glutamate and acetylcholine. Li+PGS may be useful in the development of pharmacogenomic testing strategies by enabling a classification of bipolar patients according to their response to treatment.

6.
Res Sq ; 2023 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-37461719

RESUMEN

The link between bipolar disorder (BP) and immune dysfunction remains controversial. While epidemiological studies have long suggested an association, recent research has found only limited evidence of such a relationship. To clarify this, we investigated the contributions of immune-relevant genetic factors to the response to lithium (Li) treatment and the clinical presentation of BP. First, we assessed the association of a large collection of immune-related genes (4,925) with Li response, defined by the Retrospective Assessment of the Lithium Response Phenotype Scale (Alda scale), and clinical characteristics in patients with BP from the International Consortium on Lithium Genetics (ConLi+Gen, N = 2,374). Second, we calculated here previously published polygenic scores (PGSs) for immune-related traits and evaluated their associations with Li response and clinical features. We found several genes associated with Li response at p < 1×10- 4 values, including HAS3, CNTNAP5 and NFIB. Network and functional enrichment analyses uncovered an overrepresentation of pathways involved in cell adhesion and intercellular communication, which appear to converge on the well-known Li-induced inhibition of GSK-3ß. We also found various genes associated with BP's age-at-onset, number of mood episodes, and presence of psychosis, substance abuse and/or suicidal ideation at the exploratory threshold. These included RTN4, XKR4, NRXN1, NRG1/3 and GRK5. Additionally, PGS analyses suggested serum FAS, ECP, TRANCE and cytokine ligands, amongst others, might represent potential circulating biomarkers of Li response and clinical presentation. Taken together, our results support the notion of a relatively weak association between immunity and clinically relevant features of BP at the genetic level.

7.
Mol Psychiatry ; 2023 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-36991131

RESUMEN

Lithium (Li) is one of the most effective drugs for treating bipolar disorder (BD), however, there is presently no way to predict response to guide treatment. The aim of this study is to identify functional genes and pathways that distinguish BD Li responders (LR) from BD Li non-responders (NR). An initial Pharmacogenomics of Bipolar Disorder study (PGBD) GWAS of lithium response did not provide any significant results. As a result, we then employed network-based integrative analysis of transcriptomic and genomic data. In transcriptomic study of iPSC-derived neurons, 41 significantly differentially expressed (DE) genes were identified in LR vs NR regardless of lithium exposure. In the PGBD, post-GWAS gene prioritization using the GWA-boosting (GWAB) approach identified 1119 candidate genes. Following DE-derived network propagation, there was a highly significant overlap of genes between the top 500- and top 2000-proximal gene networks and the GWAB gene list (Phypergeometric = 1.28E-09 and 4.10E-18, respectively). Functional enrichment analyses of the top 500 proximal network genes identified focal adhesion and the extracellular matrix (ECM) as the most significant functions. Our findings suggest that the difference between LR and NR was a much greater effect than that of lithium. The direct impact of dysregulation of focal adhesion on axon guidance and neuronal circuits could underpin mechanisms of response to lithium, as well as underlying BD. It also highlights the power of integrative multi-omics analysis of transcriptomic and genomic profiling to gain molecular insights into lithium response in BD.

8.
Res Sq ; 2023 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-36824922

RESUMEN

Lithium is regarded as the first-line treatment for bipolar disorder (BD), a severe and disabling mental disorder that affects about 1% of the population worldwide. Nevertheless, lithium is not consistently effective, with only 30% of patients showing a favorable response to treatment. To provide personalized treatment options for bipolar patients, it is essential to identify prediction biomarkers such as polygenic scores. In this study, we developed a polygenic score for lithium treatment response (Li+PGS) in patients with BD. To gain further insights into lithium's possible molecular mechanism of action, we performed a genome-wide gene-based analysis. Using polygenic score modeling, via methods incorporating Bayesian regression and continuous shrinkage priors, Li+PGS was developed in the International Consortium of Lithium Genetics cohort (ConLi+Gen: N=2,367) and replicated in the combined PsyCourse (N=89) and BipoLife (N=102) studies. The associations of Li+PGS and lithium treatment response - defined in a continuous ALDA scale and a categorical outcome (good response vs. poor response) were tested using regression models, each adjusted for the covariates: age, sex, and the first four genetic principal components. Statistical significance was determined at P<����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������.

11.
Br J Psychiatry ; : 1-10, 2022 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-35225756

RESUMEN

BACKGROUND: Response to lithium in patients with bipolar disorder is associated with clinical and transdiagnostic genetic factors. The predictive combination of these variables might help clinicians better predict which patients will respond to lithium treatment. AIMS: To use a combination of transdiagnostic genetic and clinical factors to predict lithium response in patients with bipolar disorder. METHOD: This study utilised genetic and clinical data (n = 1034) collected as part of the International Consortium on Lithium Genetics (ConLi+Gen) project. Polygenic risk scores (PRS) were computed for schizophrenia and major depressive disorder, and then combined with clinical variables using a cross-validated machine-learning regression approach. Unimodal, multimodal and genetically stratified models were trained and validated using ridge, elastic net and random forest regression on 692 patients with bipolar disorder from ten study sites using leave-site-out cross-validation. All models were then tested on an independent test set of 342 patients. The best performing models were then tested in a classification framework. RESULTS: The best performing linear model explained 5.1% (P = 0.0001) of variance in lithium response and was composed of clinical variables, PRS variables and interaction terms between them. The best performing non-linear model used only clinical variables and explained 8.1% (P = 0.0001) of variance in lithium response. A priori genomic stratification improved non-linear model performance to 13.7% (P = 0.0001) and improved the binary classification of lithium response. This model stratified patients based on their meta-polygenic loadings for major depressive disorder and schizophrenia and was then trained using clinical data. CONCLUSIONS: Using PRS to first stratify patients genetically and then train machine-learning models with clinical predictors led to large improvements in lithium response prediction. When used with other PRS and biological markers in the future this approach may help inform which patients are most likely to respond to lithium treatment.

12.
Bipolar Disord ; 24(5): 521-529, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-34825444

RESUMEN

BACKGROUND: Bipolar disorder (BD) is characterized by episodes of depression and mania and disrupted circadian rhythms. Lithium is an effective therapy for BD, but only 30%-40% of patients are fully responsive. Preclinical models show that lithium alters circadian rhythms. However, it is unknown if the circadian rhythm effects of lithium are essential to its therapeutic properties. METHODS: In secondary analyses of a multi-center, prospective, trial of lithium for BD, we examined the relationship between circadian rhythms and therapeutic response to lithium. Using standardized instruments, we measured morningness, diurnal changes in mood, sleep, and energy (circadian rhythm disturbances) in a cross-sectional study of 386 BD subjects with varying lithium exposure histories. Next, we tracked symptoms of depression and mania prospectively over 12 weeks in a subset of 88 BD patients initiating treatment with lithium. Total, circadian, and affective mood symptoms were scored separately and analyzed. RESULTS: Subjects with no prior lithium exposure had the most circadian disruption, while patients stable on lithium monotherapy had the least. Patients who were stable on lithium with another drug or unstable on lithium showed intermediate levels of disruption. Treatment with lithium for 12 weeks yielded significant reductions in total and affective depression symptoms. Lithium responders (Li-Rs) showed improvement in circadian symptoms of depression, but non-responders did not. There was no difference between Li-Rs and nonresponders in affective, circadian, or total symptoms of mania. CONCLUSIONS: Exposure to lithium is associated with reduced circadian disruption. Lithium response at 12 weeks was selectively associated with the reduction of circadian depressive symptoms. We conclude that stabilization of circadian rhythms may be an important feature of lithium's therapeutic effects. CLINICAL TRIALS REGISTRY: NCT0127253.

13.
Transl Psychiatry ; 11(1): 606, 2021 11 29.
Artículo en Inglés | MEDLINE | ID: mdl-34845190

RESUMEN

Lithium is the gold standard therapy for Bipolar Disorder (BD) but its effectiveness differs widely between individuals. The molecular mechanisms underlying treatment response heterogeneity are not well understood, and personalized treatment in BD remains elusive. Genetic analyses of the lithium treatment response phenotype may generate novel molecular insights into lithium's therapeutic mechanisms and lead to testable hypotheses to improve BD management and outcomes. We used fixed effect meta-analysis techniques to develop meta-analytic polygenic risk scores (MET-PRS) from combinations of highly correlated psychiatric traits, namely schizophrenia (SCZ), major depression (MD) and bipolar disorder (BD). We compared the effects of cross-disorder MET-PRS and single genetic trait PRS on lithium response. For the PRS analyses, we included clinical data on lithium treatment response and genetic information for n = 2283 BD cases from the International Consortium on Lithium Genetics (ConLi+Gen; www.ConLiGen.org ). Higher SCZ and MD PRSs were associated with poorer lithium treatment response whereas BD-PRS had no association with treatment outcome. The combined MET2-PRS comprising of SCZ and MD variants (MET2-PRS) and a model using SCZ and MD-PRS sequentially improved response prediction, compared to single-disorder PRS or to a combined score using all three traits (MET3-PRS). Patients in the highest decile for MET2-PRS loading had 2.5 times higher odds of being classified as poor responders than patients with the lowest decile MET2-PRS scores. An exploratory functional pathway analysis of top MET2-PRS variants was conducted. Findings may inform the development of future testing strategies for personalized lithium prescribing in BD.


Asunto(s)
Trastorno Bipolar , Trastorno Depresivo Mayor , Esquizofrenia , Trastorno Bipolar/tratamiento farmacológico , Trastorno Bipolar/genética , Depresión , Trastorno Depresivo Mayor/tratamiento farmacológico , Trastorno Depresivo Mayor/genética , Predisposición Genética a la Enfermedad , Humanos , Litio/uso terapéutico , Herencia Multifactorial , Factores de Riesgo , Esquizofrenia/tratamiento farmacológico , Esquizofrenia/genética
14.
Int J Bipolar Disord ; 9(1): 30, 2021 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-34596784

RESUMEN

BACKGROUND: Understanding the underlying architecture of mood regulation in bipolar disorder (BD) is important, as we are starting to conceptualize BD as a more complex disorder than one of recurring manic or depressive episodes. Nonlinear techniques are employed to understand and model the behavior of complex systems. Our aim was to assess the underlying nonlinear properties that account for mood and energy fluctuations in patients with BD; and to compare whether these processes were different in healthy controls (HC) and unaffected first-degree relatives (FDR). We used three different nonlinear techniques: Lyapunov exponent, detrended fluctuation analysis and fractal dimension to assess the underlying behavior of mood and energy fluctuations in all groups; and subsequently to assess whether these arise from different processes in each of these groups. RESULTS: There was a positive, short-term autocorrelation for both mood and energy series in all three groups. In the mood series, the largest Lyapunov exponent was found in HC (1.84), compared to BD (1.63) and FDR (1.71) groups [F (2, 87) = 8.42, p < 0.005]. A post-hoc Tukey test showed that Lyapunov exponent in HC was significantly higher than both the BD (p = 0.003) and FDR groups (p = 0.03). Similarly, in the energy series, the largest Lyapunov exponent was found in HC (1.85), compared to BD (1.76) and FDR (1.67) [F (2, 87) = 11.02; p < 0.005]. There were no significant differences between groups for the detrended fluctuation analysis or fractal dimension. CONCLUSIONS: The underlying nature of mood variability is in keeping with that of a chaotic system, which means that fluctuations are generated by deterministic nonlinear process(es) in HC, BD, and FDR. The value of this complex modeling lies in analyzing the nature of the processes involved in mood regulation. It also suggests that the window for episode prediction in BD will be inevitably short.

15.
Sci Rep ; 11(1): 17823, 2021 09 08.
Artículo en Inglés | MEDLINE | ID: mdl-34497278

RESUMEN

Bipolar affective disorder (BD) is a severe psychiatric illness, for which lithium (Li) is the gold standard for acute and maintenance therapies. The therapeutic response to Li in BD is heterogeneous and reliable biomarkers allowing patients stratification are still needed. A GWAS performed by the International Consortium on Lithium Genetics (ConLiGen) has recently identified genetic markers associated with treatment responses to Li in the human leukocyte antigens (HLA) region. To better understand the molecular mechanisms underlying this association, we have genetically imputed the classical alleles of the HLA region in the European patients of the ConLiGen cohort. We found our best signal for amino-acid variants belonging to the HLA-DRB1*11:01 classical allele, associated with a better response to Li (p < 1 × 10-3; FDR < 0.09 in the recessive model). Alanine or Leucine at position 74 of the HLA-DRB1 heavy chain was associated with a good response while Arginine or Glutamic acid with a poor response. As these variants have been implicated in common inflammatory/autoimmune processes, our findings strongly suggest that HLA-mediated low inflammatory background may contribute to the efficient response to Li in BD patients, while an inflammatory status overriding Li anti-inflammatory properties would favor a weak response.


Asunto(s)
Trastorno Bipolar/genética , Predisposición Genética a la Enfermedad , Cadenas beta de HLA-DQ/genética , Cadenas HLA-DRB1/genética , Litio/uso terapéutico , Adulto , Alelos , Trastorno Bipolar/tratamiento farmacológico , Femenino , Frecuencia de los Genes , Variación Genética , Genotipo , Haplotipos , Humanos , Masculino , Persona de Mediana Edad , Farmacogenética , Resultado del Tratamiento
16.
Bipolar Disord ; 23(8): 821-831, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-33797828

RESUMEN

BACKGROUND: Lithium is regarded as a first-line treatment for bipolar disorder (BD), but partial response and non-response commonly occurs. There exists a need to identify lithium non-responders prior to initiating treatment. The Pharmacogenomics of Bipolar Disorder (PGBD) Study was designed to identify predictors of lithium response. METHODS: The PGBD Study was an eleven site prospective trial of lithium treatment in bipolar I disorder. Subjects were stabilized on lithium monotherapy over 4 months and gradually discontinued from all other psychotropic medications. After ensuring a sustained clinical remission (defined by a score of ≤3 on the CGI for 4 weeks) had been achieved, subjects were followed for up to 2 years to monitor clinical response. Cox proportional hazard models were used to examine the relationship between clinical measures and time until failure to remit or relapse. RESULTS: A total of 345 individuals were enrolled into the study and included in the analysis. Of these, 101 subjects failed to remit or relapsed, 88 achieved remission and continued to study completion, and 156 were terminated from the study for other reasons. Significant clinical predictors of treatment failure (p < 0.05) included baseline anxiety symptoms, functional impairments, negative life events and lifetime clinical features such as a history of migraine, suicidal ideation/attempts, and mixed episodes, as well as a chronic course of illness. CONCLUSIONS: In this PGBD Study of lithium response, several clinical features were found to be associated with failure to respond to lithium. Future validation is needed to confirm these clinical predictors of treatment failure and their use clinically to distinguish who will do well on lithium before starting pharmacotherapy.


Asunto(s)
Trastorno Bipolar , Trastorno Bipolar/diagnóstico , Trastorno Bipolar/tratamiento farmacológico , Trastorno Bipolar/genética , Humanos , Litio/uso terapéutico , Compuestos de Litio/uso terapéutico , Farmacogenética , Estudios Prospectivos , Resultado del Tratamiento
17.
Transl Psychiatry ; 11(1): 36, 2021 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-33431852

RESUMEN

Predicting lithium response (LiR) in bipolar disorder (BD) may inform treatment planning, but phenotypic heterogeneity complicates discovery of genomic markers. We hypothesized that patients with "exemplary phenotypes"-those whose clinical features are reliably associated with LiR and non-response (LiNR)-are more genetically separable than those with less exemplary phenotypes. Using clinical data collected from people with BD (n = 1266 across 7 centers; 34.7% responders), we computed a "clinical exemplar score," which measures the degree to which a subject's clinical phenotype is reliably predictive of LiR/LiNR. For patients whose genotypes were available (n = 321), we evaluated whether a subgroup of responders/non-responders with the top 25% of clinical exemplar scores (the "best clinical exemplars") were more accurately classified based on genetic data, compared to a subgroup with the lowest 25% of clinical exemplar scores (the "poor clinical exemplars"). On average, the best clinical exemplars of LiR had a later illness onset, completely episodic clinical course, absence of rapid cycling and psychosis, and few psychiatric comorbidities. The best clinical exemplars of LiR and LiNR were genetically separable with an area under the receiver operating characteristic curve of 0.88 (IQR [0.83, 0.98]), compared to 0.66 [0.61, 0.80] (p = 0.0032) among poor clinical exemplars. Variants in the Alzheimer's amyloid-secretase pathway, along with G-protein-coupled receptor, muscarinic acetylcholine, and histamine H1R signaling pathways were informative predictors. This study must be replicated on larger samples and extended to predict response to other mood stabilizers.


Asunto(s)
Trastorno Bipolar , Antimaníacos/uso terapéutico , Trastorno Bipolar/tratamiento farmacológico , Trastorno Bipolar/genética , Humanos , Litio/uso terapéutico , Compuestos de Litio/uso terapéutico , Fenotipo
18.
Complex Psychiatry ; 7(3-4): 80-89, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36408127

RESUMEN

Response to lithium varies widely between individuals with bipolar disorder (BD). Polygenic risk scores (PRSs) can uncover pharmacogenomics effects and may help predict drug response. Patients (N = 2,510) with BD were assessed for long-term lithium response in the Consortium on Lithium Genetics using the Retrospective Criteria of Long-Term Treatment Response in Research Subjects with Bipolar Disorder score. PRSs for attention-deficit/hyperactivity disorder (ADHD), major depressive disorder (MDD), and schizophrenia (SCZ) were computed using lassosum and in a model including all three PRSs and other covariates, and the PRS of ADHD (ß = -0.14; 95% confidence interval [CI]: -0.24 to -0.03; p value = 0.010) and MDD (ß = -0.16; 95% CI: -0.27 to -0.04; p value = 0.005) predicted worse quantitative lithium response. A higher SCZ PRS was associated with higher rates of medication nonadherence (OR = 1.61; 95% CI: 1.34-1.93; p value = 2e-7). This study indicates that genetic risk for ADHD and depression may influence lithium treatment response. Interestingly, a higher SCZ PRS was associated with poor adherence, which can negatively impact treatment response. Incorporating genetic risk of ADHD, depression, and SCZ in combination with clinical risk may lead to better clinical care for patients with BD.

19.
Mol Psychiatry ; 26(6): 2457-2470, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-32203155

RESUMEN

Lithium is a first-line medication for bipolar disorder (BD), but only one in three patients respond optimally to the drug. Since evidence shows a strong clinical and genetic overlap between depression and bipolar disorder, we investigated whether a polygenic susceptibility to major depression is associated with response to lithium treatment in patients with BD. Weighted polygenic scores (PGSs) were computed for major depression (MD) at different GWAS p value thresholds using genetic data obtained from 2586 bipolar patients who received lithium treatment and took part in the Consortium on Lithium Genetics (ConLi+Gen) study. Summary statistics from genome-wide association studies in MD (135,458 cases and 344,901 controls) from the Psychiatric Genomics Consortium (PGC) were used for PGS weighting. Response to lithium treatment was defined by continuous scores and categorical outcome (responders versus non-responders) using measurements on the Alda scale. Associations between PGSs of MD and lithium treatment response were assessed using a linear and binary logistic regression modeling for the continuous and categorical outcomes, respectively. The analysis was performed for the entire cohort, and for European and Asian sub-samples. The PGSs for MD were significantly associated with lithium treatment response in multi-ethnic, European or Asian populations, at various p value thresholds. Bipolar patients with a low polygenic load for MD were more likely to respond well to lithium, compared to those patients with high polygenic load [lowest vs highest PGS quartiles, multi-ethnic sample: OR = 1.54 (95% CI: 1.18-2.01) and European sample: OR = 1.75 (95% CI: 1.30-2.36)]. While our analysis in the Asian sample found equivalent effect size in the same direction: OR = 1.71 (95% CI: 0.61-4.90), this was not statistically significant. Using PGS decile comparison, we found a similar trend of association between a high genetic loading for MD and lower response to lithium. Our findings underscore the genetic contribution to lithium response in BD and support the emerging concept of a lithium-responsive biotype in BD.


Asunto(s)
Trastorno Bipolar , Trastorno Depresivo Mayor , Trastorno Bipolar/tratamiento farmacológico , Trastorno Bipolar/genética , Depresión , Trastorno Depresivo Mayor/tratamiento farmacológico , Trastorno Depresivo Mayor/genética , Estudio de Asociación del Genoma Completo , Humanos , Litio/uso terapéutico
20.
Neuropsychopharmacology ; 45(10): 1743-1749, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32349118

RESUMEN

Lithium remains the gold standard for the treatment of bipolar disorder (BD); however, its use has declined over the years mainly due to the side effects and the subjective experience of cognitive numbness reported by patients. In the present study, we aim to methodically test the effects of lithium on neurocognitive functioning in the largest single cohort (n = 262) of BD patients reported to date by harnessing the power of a multi-site, ongoing clinical trial of lithium monotherapy. At the cross-sectional level, multivariate analysis of covariance (MANCOVA) was conducted to examine potential group differences across neurocognitive tests [California Verbal Learning Test (CVLT trials 1-5,CVLT delayed recall), Wechsler Digit Symbol, Trail-making Test parts A and B (TMT-A; TMT-B), and a global cognition index]. At the longitudinal level, on a subset of patients (n = 88) who achieved mood stabilization with lithium monotherapy, we explored the effect of lithium treatment across time on neurocognitive functioning. There were no differences at baseline between BD patients that were taking lithium compared with those that were not. At follow-up a significant neurocognitive improvement in the global cognitive index score [F = 31.69; p < 0.001], CVLT trials 1-5 [F = 29.81; p < 0.001], CVLT delayed recall [F = 15.27; p < 0.001], and TMT-B [F = 6.64, p = 0.012] was detected. The cross-sectional and longitudinal (on a subset of 88 patients) investigations suggest that lithium may be beneficial to neurocognitive functioning in patients with BD and that at the very least it does not seem to significantly impair cognition when used therapeutically.


Asunto(s)
Trastorno Bipolar , Litio , Trastorno Bipolar/tratamiento farmacológico , Cognición , Estudios Transversales , Humanos , Pruebas Neuropsicológicas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...