Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ACS Synth Biol ; 8(7): 1583-1589, 2019 07 19.
Artículo en Inglés | MEDLINE | ID: mdl-31290648

RESUMEN

The programmability of CRISPR-derived Cas9 as a sequence-specific DNA-targeting protein has made it a powerful tool for genomic manipulation in biological research and translational applications. Cas9 activity can be programmably engineered to respond to nucleic acids, but these efforts have focused primarily on single-input control of Cas9, and until recently, they were limited by sequence dependence between parts of the guide RNA and the sequence to be detected. Here, we not only design and present DNA- and RNA-sensing conditional guide RNA (cgRNA) that have no such sequence constraints, but also demonstrate a complete set of logical computations using these designs on DNA and RNA sequence inputs, including AND, OR, NAND, and NOR. The development of sequence-independent nucleic acid-sensing CRISPR-Cas9 systems with multi-input logic computation capabilities could lead to improved genome engineering and regulation as well as the construction of synthetic circuits with broader functionality.


Asunto(s)
Sistemas CRISPR-Cas/genética , ARN Guía de Kinetoplastida/genética , ADN/genética , Edición Génica/métodos , Genómica/métodos , Ácidos Nucleicos/genética , ARN/genética
2.
Am J Respir Cell Mol Biol ; 59(4): 428-436, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-29668297

RESUMEN

The lungs of patients with cystic fibrosis (CF) are characterized by an exaggerated inflammation driven by secretion of IL-8 from bronchial epithelial cells and worsened by Pseudomonas aeruginosa infection. To identify novel antiinflammatory molecular targets, we previously performed a genetic study of 135 genes of the immune response, which identified the c.2534C>T (p.S845L) variant of phospholipase C-ß3 (PLCB3) as being significantly associated with mild progression of pulmonary disease. Silencing PLCB3 revealed that it potentiates the Toll-like receptor's inflammatory signaling cascade originating from CF bronchial epithelial cells. In the present study, we investigated the role of the PLCB3-S845L variant together with two synthetic mutants paradigmatic of impaired catalytic activity or lacking functional activation in CF bronchial epithelial cells. In experiments in which cells were exposed to P. aeruginosa, the supernatant of mucopurulent material from the airways of patients with CF or different agonists revealed that PLCB3-S845L has defects of 1) agonist-induced Ca2+ release from endoplasmic reticulum and rise of Ca2+ concentration, 2) activation of conventional protein kinase C isoform ß, and 3) induction of IL-8 release. These results, besides identifying S845L as a loss-of-function variant, strengthen the importance of targeting PLCB3 to mitigate the CF inflammatory response in bronchial epithelial cells without blunting the immune response.


Asunto(s)
Fibrosis Quística/metabolismo , Fibrosis Quística/patología , Interleucina-8/metabolismo , Fosfolipasa C beta/deficiencia , Pseudomonas aeruginosa/fisiología , Bronquios/patología , Señalización del Calcio , Línea Celular , Simulación por Computador , Humanos , Moco/metabolismo , Mutación/genética , Fosfolipasa C beta/química , Fosfolipasa C beta/genética , Fosfolipasa C beta/metabolismo , Serina/metabolismo , Relación Estructura-Actividad
3.
J Mol Biol ; 428(10 Pt B): 2195-202, 2016 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-26906928

RESUMEN

The ribosome has been described as a ribozyme in which ribosomal RNA is responsible for peptidyl-transferase reaction catalysis. The W255C mutation of the universally conserved ribosomal protein uL3 has diverse effects on ribosome function (e.g., increased affinities for transfer RNAs, decreased rates of peptidyl-transfer), and cells harboring this mutation are resistant to peptidyl-transferase inhibitors (e.g., anisomycin). These observations beg the question of how a single amino acid mutation may have such wide ranging consequences. Here, we report the structure of the vacant yeast uL3 W255C mutant ribosome by X-ray crystallography, showing a disruption of the A-site side of the peptidyl-transferase center (PTC). An additional X-ray crystallographic structure of the anisomycin-containing mutant ribosome shows that high concentrations of this inhibitor restore a "WT-like" configuration to this region of the PTC, providing insight into the resistance mechanism of the mutant. Globally, our data demonstrate that ribosomal protein uL3 is structurally essential to ensure an optimal and catalytically efficient organization of the PTC, highlighting the importance of proteins in the RNA-centered ribosome.


Asunto(s)
Mutación/genética , Biosíntesis de Proteínas/fisiología , Proteínas Ribosómicas/genética , Ribosomas/genética , Catálisis , Humanos , Peptidil Transferasas/metabolismo , Biosíntesis de Proteínas/genética , ARN Ribosómico/genética , ARN de Transferencia/genética , Proteína Ribosomal L3
4.
Nature ; 513(7519): 517-22, 2014 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-25209664

RESUMEN

The ribosome is a molecular machine responsible for protein synthesis and a major target for small-molecule inhibitors. Compared to the wealth of structural information available on ribosome-targeting antibiotics in bacteria, our understanding of the binding mode of ribosome inhibitors in eukaryotes is currently limited. Here we used X-ray crystallography to determine 16 high-resolution structures of 80S ribosomes from Saccharomyces cerevisiae in complexes with 12 eukaryote-specific and 4 broad-spectrum inhibitors. All inhibitors were found associated with messenger RNA and transfer RNA binding sites. In combination with kinetic experiments, the structures suggest a model for the action of cycloheximide and lactimidomycin, which explains why lactimidomycin, the larger compound, specifically targets the first elongation cycle. The study defines common principles of targeting and resistance, provides insights into translation inhibitor mode of action and reveals the structural determinants responsible for species selectivity which could guide future drug development.


Asunto(s)
Células Eucariotas/química , Inhibidores de la Síntesis de la Proteína/química , Inhibidores de la Síntesis de la Proteína/farmacología , Ribosomas/química , Ribosomas/efectos de los fármacos , Saccharomyces cerevisiae/química , Secuencia de Bases , Sitios de Unión/efectos de los fármacos , Cristalografía por Rayos X , Cicloheximida/farmacología , Resistencia a Medicamentos/efectos de los fármacos , Células Eucariotas/efectos de los fármacos , Células Eucariotas/enzimología , Cinética , Macrólidos/farmacología , Modelos Moleculares , Terapia Molecular Dirigida , Peso Molecular , Extensión de la Cadena Peptídica de Translación/efectos de los fármacos , Peptidil Transferasas/química , Peptidil Transferasas/metabolismo , Piperidonas/farmacología , ARN Mensajero/genética , ARN Mensajero/metabolismo , ARN de Transferencia/genética , ARN de Transferencia/metabolismo , Subunidades Ribosómicas Grandes de Eucariotas/química , Subunidades Ribosómicas Grandes de Eucariotas/efectos de los fármacos , Subunidades Ribosómicas Grandes de Eucariotas/metabolismo , Ribosomas/metabolismo , Especificidad de la Especie , Especificidad por Sustrato
5.
Curr Opin Struct Biol ; 22(6): 759-67, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-22884264

RESUMEN

The first X-ray structure of the eukaryotic ribosome at 3.0Å resolution was determined using ribosomes isolated and crystallized from the yeast Saccharomyces cerevisiae (Ben-Shem A, Garreau de Loubresse N, Melnikov S, Jenner L, Yusupova G, Yusupov M: The structure of the eukaryotic ribosome at 3.0 A resolution. Science 2011, 334:1524-1529). This accomplishment was possible due to progress in yeast ribosome biochemistry as well as recent advances in crystallographic methods developed for structure determination of prokaryotic ribosomes isolated from Thermus thermophilus and Escherichia coli. In this review we will focus on the development of isolation procedures that allowed structure determination (both cryo-EM and X-ray crystallography) to be successful for the yeast S. cerevisiae. Additionally we will introduce a new nomenclature that facilitates comparison of ribosomes from different species and kingdoms of life. Finally we will discuss the impact of the yeast 80S ribosome crystal structure on perspectives for future investigations.


Asunto(s)
Ribosomas/química , Saccharomyces cerevisiae/citología , Microscopía por Crioelectrón , Cristalografía por Rayos X , Humanos , ARN de Hongos/química , ARN de Hongos/metabolismo , Proteínas Ribosómicas/química , Proteínas Ribosómicas/metabolismo , Ribosomas/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/ultraestructura
6.
Nat Struct Mol Biol ; 19(6): 560-7, 2012 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-22664983

RESUMEN

Ribosomes are universally conserved enzymes that carry out protein biosynthesis. Bacterial and eukaryotic ribosomes, which share an evolutionarily conserved core, are thought to have evolved from a common ancestor by addition of proteins and RNA that bestow different functionalities to ribosomes from different domains of life. Recently, structures of the eukaryotic ribosome, determined by X-ray crystallography, have allowed us to compare these structures to previously determined structures of bacterial ribosomes. Here we describe selected bacteria- or eukaryote-specific structural features of the ribosome and discuss the functional implications of some of them.


Asunto(s)
Bacterias/química , Bacterias/citología , Células Eucariotas/química , Células Eucariotas/citología , Ribosomas/química , Animales , Bacterias/metabolismo , Células Eucariotas/metabolismo , Humanos , Modelos Moleculares , Biosíntesis de Proteínas , ARN Ribosómico/química , ARN Ribosómico/metabolismo , Proteínas Ribosómicas/química , Proteínas Ribosómicas/metabolismo , Ribosomas/metabolismo
7.
Science ; 334(6062): 1524-9, 2011 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-22096102

RESUMEN

Ribosomes translate genetic information encoded by messenger RNA into proteins. Many aspects of translation and its regulation are specific to eukaryotes, whose ribosomes are much larger and intricate than their bacterial counterparts. We report the crystal structure of the 80S ribosome from the yeast Saccharomyces cerevisiae--including nearly all ribosomal RNA bases and protein side chains as well as an additional protein, Stm1--at a resolution of 3.0 angstroms. This atomic model reveals the architecture of eukaryote-specific elements and their interaction with the universally conserved core, and describes all eukaryote-specific bridges between the two ribosomal subunits. It forms the structural framework for the design and analysis of experiments that explore the eukaryotic translation apparatus and the evolutionary forces that shaped it.


Asunto(s)
Ribosomas/ultraestructura , Saccharomyces cerevisiae/ultraestructura , Microscopía por Crioelectrón , Cristalografía por Rayos X , Proteínas de Unión al ADN/ultraestructura , Modelos Moleculares , ARN de Hongos/ultraestructura , ARN Ribosómico/ultraestructura , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/ultraestructura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...