Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 94
Filtrar
1.
Kidney Int Rep ; 9(9): 2657-2666, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39291186

RESUMEN

Introduction: SARS-CoV-2 infection increases systemic inflammatory cytokines which act as a second-hit driver of Apolipoprotein L1 (APOL1)-mediated collapsing glomerulopathy. SARS-CoV-2 vaccination also increases cytokines. Recent reports of new glomerular disease in individuals with APOL1 high-risk genotype (HRG) following SARS-CoV-2 vaccination raised the concern SARS-CoV-2 vaccination may also act as a second-hit driver of APOL1-mediated glomerulopathy. Methods: We screened 1507 adults in the Duke's Measurement to Understand Reclassification of Disease of Cabarrus and Kannapolis (MURDOCK) registry and enrolled 105 eligible participants with available SARS-CoV-2 vaccination data, prevaccination and postvaccination serum creatinine, and urine protein measurements. Paired data were stratified by number of APOL1 risk alleles (RAs) and compared within groups using Wilcoxon signed rank test and across groups by analysis of variance. Results: Among 105 participants, 30 (28.6%) had 2, 39 (37.1%) had 1, and 36 (34.3%) had 0 APOL1 RA. Most of the participants (94%) received at least 2 doses of vaccine. Most (98%) received the BNT162B2 (Pfizer) or mRNA-1273 (Moderna) vaccine. On average, the prevaccine and postvaccine laboratory samples were drawn 648 days apart. There were no detectable differences between pre- and post-serum creatinine or pre- and post-urine albumin creatinine ratio irrespective of the participants' APOL1 genotype. Finally, most participants with APOL1 RA had the most common haplotype (E150, I228, and K255) and lacked the recently described protective N264K haplotype. Conclusion: In this observational study, APOL1 HRG is not associated with new or worsening of proteinuria or decline in kidney function following SARS-CoV-2 vaccination. Validation of this result in larger cohorts would further support the renal safety of SARS-CoV-2 vaccine in individuals with APOL1 HRG.

2.
Artículo en Inglés | MEDLINE | ID: mdl-39297703

RESUMEN

BACKGROUND: Sickle cell disease (SCD) is a chronic medical condition characterized by red blood cell sickling, vaso-occlusion, hemolytic anemia, and subsequently, end-organ damage and reduced survival. Because of this significant pathophysiology and early mortality, we hypothesized that patients with SCD are experiencing accelerated biological aging compared to individuals without SCD. METHODS: We utilized the DunedinPACE measure to compare the epigenetic pace of aging in 131 Black Americans with SCD to 1391 Black American veterans without SCD. RESULTS: SCD patients displayed a significantly accelerated pace of aging (DunedinPACE mean difference of 0.057 points) compared to the veterans without SCD, whereby SCD patients were aging approximately 0.7 months more per year than those without SCD (p=4.49x10-8). This was true, even though the SCD patients were significantly younger according to chronological age than the individuals without SCD, making the epigenetic aging discrepancy even more apparent. This association became stronger when we removed individuals with PTSD from the non-SCD group (p=2.18x10-9), and stronger still when we restricted the SCD patients to those with hemoglobin SS and Sß0 thalassemia genotypes (p=1.61x10-10). CONCLUSIONS: These data support our hypothesis that individuals with SCD experience accelerated biological aging as measured by global epigenetic variation. The assessment of epigenetic measures of biological aging may prove useful to identify which SCD patients would most benefit from clinical interventions to reduce mortality.

3.
Transfusion ; 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38966903

RESUMEN

BACKGROUND: Red cell alloimmunization after exposure to donor red cells is a very common complication of transfusion for patients with sickle cell disease (SCD), resulting frequently in accelerated donor red blood cell destruction. Patients show substantial differences in their predisposition to alloimmunization, and genetic variability is one proposed component. Although several genetic association studies have been conducted for alloimmunization, the results have been inconsistent, and the genetic determinants of alloimmunization remain largely unknown. STUDY DESIGN AND METHODS: We performed a genome-wide association study (GWAS) in 236 African American (AA) SCD patients from the Outcome Modifying Genes in Sickle Cell Disease (OMG-SCD) cohort, which is part of Trans-Omics for Precision Medicine (TOPMed), with whole-genome sequencing data available. We also performed sensitivity analyses adjusting for different sets of covariates and applied different sample grouping strategies based on the number of alloantibodies patients developed. RESULTS: We identified one genome-wide significant locus on chr12 (p = 3.1e-9) with no evidence of genomic inflation (lambda = 1.003). Further leveraging QTL evidence from GTEx whole blood and/or Jackson Heart Study PBMC RNA-Seq data, we identified a number of potential genes, such as ARHGAP9, STAT6, and ATP23, that may be driving the association signal. We also discovered some suggestive loci using different analysis strategies. DISCUSSION: We call for the community to collect additional alloantibody information within SCD cohorts to further the understanding of the genetic basis of alloimmunization in order to improve transfusion outcomes.

4.
Acta Neuropathol Commun ; 12(1): 111, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38956662

RESUMEN

The genetic architecture of Parkinson's disease (PD) is complex and multiple brain cell subtypes are involved in the neuropathological progression of the disease. Here we aimed to advance our understanding of PD genetic complexity at a cell subtype precision level. Using parallel single-nucleus (sn)RNA-seq and snATAC-seq analyses we simultaneously profiled the transcriptomic and chromatin accessibility landscapes in temporal cortex tissues from 12 PD compared to 12 control subjects at a granular single cell resolution. An integrative bioinformatic pipeline was developed and applied for the analyses of these snMulti-omics datasets. The results identified a subpopulation of cortical glutamatergic excitatory neurons with remarkably altered gene expression in PD, including differentially-expressed genes within PD risk loci identified in genome-wide association studies (GWAS). This was the only neuronal subtype showing significant and robust overexpression of SNCA. Further characterization of this neuronal-subpopulation showed upregulation of specific pathways related to axon guidance, neurite outgrowth and post-synaptic structure, and downregulated pathways involved in presynaptic organization and calcium response. Additionally, we characterized the roles of three molecular mechanisms in governing PD-associated cell subtype-specific dysregulation of gene expression: (1) changes in cis-regulatory element accessibility to transcriptional machinery; (2) changes in the abundance of master transcriptional regulators, including YY1, SP3, and KLF16; (3) candidate regulatory variants in high linkage disequilibrium with PD-GWAS genomic variants impacting transcription factor binding affinities. To our knowledge, this study is the first and the most comprehensive interrogation of the multi-omics landscape of PD at a cell-subtype resolution. Our findings provide new insights into a precise glutamatergic neuronal cell subtype, causal genes, and non-coding regulatory variants underlying the neuropathological progression of PD, paving the way for the development of cell- and gene-targeted therapeutics to halt disease progression as well as genetic biomarkers for early preclinical diagnosis.


Asunto(s)
Redes Reguladoras de Genes , Neuronas , Enfermedad de Parkinson , Humanos , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/metabolismo , Enfermedad de Parkinson/patología , Neuronas/metabolismo , Neuronas/patología , Masculino , Femenino , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo , Anciano , Factor de Transcripción YY1/genética , Factor de Transcripción YY1/metabolismo , Estudio de Asociación del Genoma Completo , Transcriptoma , Análisis de la Célula Individual , Lóbulo Temporal/metabolismo , Lóbulo Temporal/patología , Persona de Mediana Edad , Regulación de la Expresión Génica/genética , Multiómica
5.
PLoS One ; 19(7): e0306399, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39024215

RESUMEN

Research shows that one in five children will experience a concussion by age 16. Compared to adults, children experience longer and more severe postconcussive symptoms (PCS), with severity and duration varying considerably among children and complicating management of these patients. Persistent PCS can result in increased school absenteeism, social isolation, and psychological distress. Although early PCS diagnosis and access to evidence-based interventions are strongly linked to positive health and academic outcomes, symptom severity and duration are not fully explained by acute post-injury symptoms. Prior research has focused on the role of neuroinflammation in mediating PCS and associated fatigue; however relationship between inflammatory biomarkers and PCS severity, has not examined longitudinally. To identify which children are at high risk for persistent PCS and poor health, academic, and social outcomes, research tracking PCS trajectories and describing school-based impacts across the entire first year postinjury is critically needed. This study will 1) define novel PCS trajectory typologies in a racially/ethnically diverse population of 500 children with concussion (11-17 years, near equal distribution by sex), 2) identify associations between these typologies and patterns of inflammatory biomarkers and genetic variants, 3) develop a risk stratification model to identify children at risk for persistent PCS; and 4) gain unique insights and describe PCS impact, including fatigue, on longer-term academic and social outcomes. We will be the first to use NIH's symptom science model and patient-reported outcomes to explore the patterns of fatigue and other physical, cognitive, psychological, emotional and academic responses to concussion in children over a full year. Our model will enable clinicians and educators to identify children most at risk for poor long-term health, social, and academic outcomes after concussion. This work is critical to meeting our long-term goal of developing personalized concussion symptom-management strategies to improve outcomes and reduce disparities in the health and quality of life of children.


Asunto(s)
Conmoción Encefálica , Síndrome Posconmocional , Humanos , Niño , Adolescente , Masculino , Síndrome Posconmocional/diagnóstico , Femenino , Biomarcadores , Medición de Riesgo
6.
medRxiv ; 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-39072012

RESUMEN

Background: The occurrence of post-traumatic stress disorder (PTSD) following a traumatic event is associated with biological differences that can represent the susceptibility to PTSD, the impact of trauma, or the sequelae of PTSD itself. These effects include differences in DNA methylation (DNAm), an important form of epigenetic gene regulation, at multiple CpG loci across the genome. Moreover, these effects can be shared or specific to both central and peripheral tissues. Here, we aim to identify blood DNAm differences associated with PTSD and characterize the underlying biological mechanisms by examining the extent to which they mirror associations across multiple brain regions. Methods: As the Psychiatric Genomics Consortium (PGC) PTSD Epigenetics Workgroup, we conducted the largest cross-sectional meta-analysis of epigenome-wide association studies (EWASs) of PTSD to date, involving 5077 participants (2156 PTSD cases and 2921 trauma-exposed controls) from 23 civilian and military studies. PTSD diagnosis assessments were harmonized following the standardized guidelines established by the PGC-PTSD Workgroup. DNAm was assayed from blood using either Illumina HumanMethylation450 or MethylationEPIC (850K) BeadChips. A common QC pipeline was applied. Within each cohort, DNA methylation was regressed on PTSD, sex (if applicable), age, blood cell proportions, and ancestry. An inverse variance-weighted meta-analysis was performed. We conducted replication analyses in tissue from multiple brain regions, neuronal nuclei, and a cellular model of prolonged stress. Results: We identified 11 CpG sites associated with PTSD in the overall meta-analysis (1.44e-09 < p < 5.30e-08), as well as 14 associated in analyses of specific strata (military vs civilian cohort, sex, and ancestry), including CpGs in AHRR and CDC42BPB. Many of these loci exhibit blood-brain correlation in methylation levels and cross-tissue associations with PTSD in multiple brain regions. Methylation at most CpGs correlated with their annotated gene expression levels. Conclusions: This study identifies 11 PTSD-associated CpGs, also leverages data from postmortem brain samples, GWAS, and genome-wide expression data to interpret the biology underlying these associations and prioritize genes whose regulation differs in those with PTSD.

7.
Biol Res Nurs ; 26(4): 508-517, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38679469

RESUMEN

Objective: Sickle cell disease (SCD), the most common inherited blood disorder in the United States, is associated with severe psychoneurological symptoms. While epigenetic age acceleration has been linked to psychoneurological symptom burden in other diseases, this connection is unexplored in SCD. This study aimed to assess the association between epigenetic age acceleration and psychoneurological symptom burden in SCD. Methods: In this cross-sectional study, emotional impact, pain impact, sleep impact, social functioning, and cognitive function were assessed in 87 adults living with SCD. DNA methylation data were generated from blood specimens and used to calculate epigenetic age using five clocks (Horvath, Hannum, PhenoAge, GrimAge, & DunedinPACE). Associations between epigenetic age acceleration and symptoms were assessed. Results: The sample (N = 87) had a mean (SD) chronologic age was 30.6 (8.1) years. Epigenetic age acceleration was associated with several symptom outcomes. GrimAge age acceleration (ß = -0.49, p = .03) and increased DunedinPACE (ß = -2.23, p = .004) were associated with worse emotional impact scores. PhenoAge (ß = -0.32, p = .04) and the GrimAge (ß = -0.48, p = .05) age acceleration were associated with worse pain impact scores. Increased DunedinPACE (ß = -2.07 p = .04) were associated with worse sleep impact scores. Increased DunedinPACE (ß = -2.87, p = .005) was associated with worse social functioning scores. We did not find associations between epigenetic age acceleration and cognitive function in this sample. Conclusion: Epigenetic age acceleration was associated with worse symptom experiences, suggesting the potential for epigenetic age acceleration as a biomarker to aid in risk stratification or targets for intervention to mitigate symptom burden in SCD.


Asunto(s)
Anemia de Células Falciformes , Epigénesis Genética , Humanos , Anemia de Células Falciformes/genética , Anemia de Células Falciformes/fisiopatología , Anemia de Células Falciformes/psicología , Femenino , Masculino , Estudios Transversales , Adulto , Envejecimiento , Persona de Mediana Edad
8.
J Psychiatr Res ; 174: 283-288, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38678685

RESUMEN

Exposure to toxins-such as heavy metals and air pollution-can result in poor health and wellbeing. Recent scientific and media attention has highlighted negative health outcomes associated with toxic exposures for U.S. military personnel deployed overseas. Despite established health risks, less empirical work has examined whether deployment-related toxic exposures are associated with declines in mental and physical health after leaving military service, particularly among the most recent cohort of veterans deployed after September 11, 2001. Using data from 659 U.S. veterans in the VISN 6 MIRECC Post-Deployment Mental Health Study, we tested whether self-reported toxic exposures were associated with poorer mental and physical health. At baseline, veterans who reported more toxic exposures also reported more mental health, ß = 0.14, 95% CI [0.04, 0.23], p = 0.004, and physical health symptoms, ß = 0.21, 95% CI [0.11, 0.30], p < 0.001. Over the next ten years, veterans reporting more toxic exposures also had greater increases in mental health symptoms, ß = 0.23, 95% CI [0.15, 0.31], p < 0.001, physical health symptoms, ß = 0.22, 95% CI [0.14, 0.30], p < 0.001, and chronic disease diagnoses, ß = 0.15, 95% CI [0.07, 0.23], p < 0.001. These associations accounted for demographic and military covariates, including combat exposure. Our findings suggest that toxic exposures are associated with worsening mental and physical health after military service, and this recent cohort of veterans will have increased need for mental health and medical care as they age into midlife and older age.


Asunto(s)
Autoinforme , Veteranos , Humanos , Masculino , Veteranos/estadística & datos numéricos , Femenino , Adulto , Estados Unidos/epidemiología , Persona de Mediana Edad , Personal Militar/estadística & datos numéricos , Estado de Salud , Despliegue Militar/estadística & datos numéricos , Ataques Terroristas del 11 de Septiembre , Salud Mental
9.
Psychiatry Res ; 336: 115908, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38626626

RESUMEN

Measures of epigenetic aging derived from DNA methylation (DNAm) have enabled the assessment of biological aging in new populations and cohorts. In the present study, we used an epigenetic measure of aging, DunedinPACE, to examine rates of aging across demographic groups in a sample of 2,309 United States military veterans from the VISN 6 MIRECC's Post-Deployment Mental Health Study. As assessed by DunedinPACE, female veterans were aging faster than male veterans (ß = 0.39, 95 % CI [0.29, 0.48], p < .001), non-Hispanic Black veterans were aging faster than non-Hispanic White veterans (ß = 0.58, 95 % CI [0.50, 0.66], p < .001), and older veterans were biologically aging faster than younger veterans (ß = 0.21, 95 % CI [0.18, 0.25], p < .001). In secondary analyses, these differences in rates of aging were not explained by a variety of biopsychosocial covariates. In addition, the percentage of European genetic admixture in non-Hispanic Black veterans was not associated with DunedinPACE. Our findings suggest that female and non-Hispanic Black veterans are at greater risk of accelerated aging among post-9/11 veterans. Interventions that slow aging might provide relatively greater benefit among veterans comprising these at-risk groups.


Asunto(s)
Envejecimiento , Metilación de ADN , Epigénesis Genética , Veteranos , Adulto , Anciano , Femenino , Humanos , Masculino , Persona de Mediana Edad , Factores de Edad , Envejecimiento/genética , Negro o Afroamericano/estadística & datos numéricos , Factores Sexuales , Estados Unidos/epidemiología , Veteranos/estadística & datos numéricos , Blanco/estadística & datos numéricos
10.
J Proteome Res ; 23(3): 1039-1048, 2024 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-38353026

RESUMEN

Sickle cell disease (SCD) is characterized by red blood cell sickling, vaso-occlusion, hemolytic anemia, damage to multiple organ systems, and, as a result, shortened life expectancy. Sickle cell disease nephropathy (SCDN) and pulmonary hypertension (pHTN) are common and frequently co-occurring complications of SCD; both are associated with markedly accelerated mortality. To identify candidate circulating biomarkers of SCDN and pHTN, we used mass spectrometry to quantify the relative abundance of >1000 proteins in plasma samples from 189 adults with SCD from the Outcome Modifying Genes in SCD (OMG-SCD) cohort (ProteomeXchange identifier PXD048716). Forty-four proteins were differentially abundant in SCDN, most significantly cystatin-C and collagen α-1(XVIII) chain (COIA1), and 55 proteins were dysregulated in patients with SCDN and pHTN, most significantly insulin-like growth factor-binding protein 6 (IBP6). Network analysis identified a module of 133 coregulated proteins significantly associated with SCDN, that was enriched for extracellular matrix proteins, insulin-like growth factor binding proteins, cell adhesion proteins, EGF-like calcium binding proteins, and several cadherin family members. Collectively, these data provide a comprehensive understanding of plasma protein changes in SCDN and pHTN which validate numerous studies of chronic kidney disease and suggest shared profiles of protein disruption in kidney dysfunction and pHTN among SCD patients.


Asunto(s)
Anemia de Células Falciformes , Hipertensión Pulmonar , Enfermedades Vasculares , Adulto , Humanos , Hipertensión Pulmonar/genética , Proteómica , Anemia de Células Falciformes/complicaciones , Anemia de Células Falciformes/genética , Eritrocitos , Colágeno Tipo I
11.
Psychiatry Res ; 333: 115757, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38309009

RESUMEN

Cannabis use has been increasing over the past decade, not only in the general US population, but particularly among military veterans. With this rise in use has come a concomitant increase in cannabis use disorder (CUD) among veterans. Here, we performed an epigenome-wide association study for lifetime CUD in an Iraq/Afghanistan era veteran cohort enriched for posttraumatic stress disorder (PTSD) comprising 2,310 total subjects (1,109 non-Hispanic black and 1,201 non-Hispanic white). We also investigated CUD interactions with current PTSD status and examined potential indirect effects of DNA methylation (DNAm) on the relationship between CUD and psychiatric diagnoses. Four CpGs were associated with lifetime CUD, even after controlling for the effects of current smoking (AHRR cg05575921, LINC00299 cg23079012, VWA7 cg22112841, and FAM70A cg08760398). Importantly, cg05575921, a CpG strongly linked to smoking, remained associated with lifetime CUD even when restricting the analysis to veterans who reported never smoking cigarettes. Moreover, CUD interacted with current PTSD to affect cg05575921 and cg23079012 such that those with both CUD and PTSD displayed significantly lower DNAm compared to the other groups. Finally, we provide preliminary evidence that AHRR cg05575921 helps explain the association between CUD and any psychiatric diagnoses, specifically mood disorders.


Asunto(s)
Cannabis , Abuso de Marihuana , Trastornos por Estrés Postraumático , Trastornos Relacionados con Sustancias , Veteranos , Humanos , Trastornos por Estrés Postraumático/epidemiología , Trastornos por Estrés Postraumático/genética , Trastornos por Estrés Postraumático/psicología , Veteranos/psicología , Abuso de Marihuana/psicología , Metilación de ADN , Trastornos Relacionados con Sustancias/epidemiología
12.
Transl Psychiatry ; 14(1): 4, 2024 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-38184702

RESUMEN

People who experience trauma and develop posttraumatic stress disorder (PTSD) are at increased risk for poor health. One mechanism that could explain this risk is accelerated biological aging, which is associated with the accumulation of chronic diseases, disability, and premature mortality. Using data from 2309 post-9/11 United States military veterans who participated in the VISN 6 MIRECC's Post-Deployment Mental Health Study, we tested whether PTSD and trauma exposure were associated with accelerated rate of biological aging, assessed using a validated DNA methylation (DNAm) measure of epigenetic aging-DunedinPACE. Veterans with current PTSD were aging faster than those who did not have current PTSD, ß = 0.18, 95% CI [0.11, 0.27], p < .001. This effect represented an additional 0.4 months of biological aging each year. Veterans were also aging faster if they reported more PTSD symptoms, ß = 0.13, 95% CI [0.09, 0.16], p < 0.001, or higher levels of trauma exposure, ß = 0.09, 95% CI [0.05, 0.13], p < 0.001. Notably, veterans with past PTSD were aging more slowly than those with current PTSD, ß = -0.21, 95% CI [-0.35, -0.07], p = .003. All reported results accounted for age, gender, self-reported race/ethnicity, and education, and remained when controlling for smoking. Our findings suggest that an accelerated rate of biological aging could help explain how PTSD contributes to poor health and highlights the potential benefits of providing efficacious treatment to populations at increased risk of trauma and PTSD.


Asunto(s)
Trastornos por Estrés Postraumático , Veteranos , Humanos , Trastornos por Estrés Postraumático/epidemiología , Envejecimiento , Metilación de ADN , Escolaridad
13.
Blood Adv ; 8(1): 47-55, 2024 01 09.
Artículo en Inglés | MEDLINE | ID: mdl-37967379

RESUMEN

ABSTRACT: Sickle cell disease (SCD) affects ∼100 000 predominantly African American individuals in the United States, causing significant cellular damage, increased disease complications, and premature death. However, the contribution of epigenetic factors to SCD pathophysiology remains relatively unexplored. DNA methylation (DNAm), a primary epigenetic mechanism for regulating gene expression in response to the environment, is an important driver of normal cellular aging. Several DNAm epigenetic clocks have been developed to serve as a proxy for cellular aging. We calculated the epigenetic ages of 89 adults with SCD (mean age, 30.64 years; 60.64% female) using 5 published epigenetic clocks: Horvath, Hannum, PhenoAge, GrimAge, and DunedinPACE. We hypothesized that in chronic disease, such as SCD, individuals would demonstrate epigenetic age acceleration, but the results differed depending on the clock used. Recently developed clocks more consistently demonstrated acceleration (GrimAge, DunedinPACE). Additional demographic and clinical phenotypes were analyzed to explore their association with epigenetic age estimates. Chronological age was significantly correlated with epigenetic age in all clocks (Horvath, r = 0.88; Hannum, r = 0.89; PhenoAge, r = 0.85; GrimAge, r = 0.88; DunedinPACE, r = 0.34). The SCD genotype was associated with 2 clocks (PhenoAge, P = .02; DunedinPACE, P < .001). Genetic ancestry, biological sex, ß-globin haplotypes, BCL11A rs11886868, and SCD severity were not associated. These findings, among the first to interrogate epigenetic aging in adults with SCD, demonstrate epigenetic age acceleration with recently developed epigenetic clocks but not older-generation clocks. Further development of epigenetic clocks may improve their predictive ability and utility for chronic diseases such as SCD.


Asunto(s)
Envejecimiento , Anemia de Células Falciformes , Adulto , Humanos , Femenino , Masculino , Envejecimiento/genética , Senescencia Celular , Anemia de Células Falciformes/genética , Negro o Afroamericano/genética , Epigénesis Genética
14.
iScience ; 26(12): 108473, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-38077122

RESUMEN

Metabolite genome-wide association studies (mGWAS) have advanced our understanding of the genetic control of metabolite levels. However, interpreting these associations remains challenging due to a lack of tools to annotate gene-metabolite pairs beyond the use of conservative statistical significance threshold. Here, we introduce the shortest reactional distance (SRD) metric, drawing from the comprehensive KEGG database, to enhance the biological interpretation of mGWAS results. We applied this approach to three independent mGWAS, including a case study on sickle cell disease patients. Our analysis reveals an enrichment of small SRD values in reported mGWAS pairs, with SRD values significantly correlating with mGWAS p values, even beyond the standard conservative thresholds. We demonstrate the utility of SRD annotation in identifying potential false negatives and inaccuracies within current metabolic pathway databases. Our findings highlight the SRD metric as an objective, quantitative and easy-to-compute annotation for gene-metabolite pairs, suitable to integrate statistical evidence to biological networks.

15.
Cell Biosci ; 13(1): 185, 2023 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-37789374

RESUMEN

BACKGROUND: The genetic underpinnings of late-onset Alzheimer's disease (LOAD) are yet to be fully elucidated. Although numerous LOAD-associated loci have been discovered, the causal variants and their target genes remain largely unknown. Since the brain is composed of heterogenous cell subtypes, it is imperative to study the brain on a cell subtype specific level to explore the biological processes underlying LOAD. METHODS: Here, we present the largest parallel single-nucleus (sn) multi-omics study to simultaneously profile gene expression (snRNA-seq) and chromatin accessibility (snATAC-seq) to date, using nuclei from 12 normal and 12 LOAD brains. We identified cell subtype clusters based on gene expression and chromatin accessibility profiles and characterized cell subtype-specific LOAD-associated differentially expressed genes (DEGs), differentially accessible peaks (DAPs) and cis co-accessibility networks (CCANs). RESULTS: Integrative analysis defined disease-relevant CCANs in multiple cell subtypes and discovered LOAD-associated cell subtype-specific candidate cis regulatory elements (cCREs), their candidate target genes, and trans-interacting transcription factors (TFs), some of which, including ELK1, JUN, and SMAD4 in excitatory neurons, were also LOAD-DEGs. Finally, we focused on a subset of cell subtype-specific CCANs that overlap known LOAD-GWAS regions and catalogued putative functional SNPs changing the affinities of TF motifs within LOAD-cCREs linked to LOAD-DEGs, including APOE and MYO1E in a specific subtype of microglia and BIN1 in a subpopulation of oligodendrocytes. CONCLUSIONS: To our knowledge, this study represents the most comprehensive systematic interrogation to date of regulatory networks and the impact of genetic variants on gene dysregulation in LOAD at a cell subtype resolution. Our findings reveal crosstalk between epigenetic, genomic, and transcriptomic determinants of LOAD pathogenesis and define catalogues of candidate genes, cCREs, and variants involved in LOAD genetic etiology and the cell subtypes in which they act to exert their pathogenic effects. Overall, these results suggest that cell subtype-specific cis-trans interactions between regulatory elements and TFs, and the genes dysregulated by these networks contribute to the development of LOAD.

16.
medRxiv ; 2023 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-37662265

RESUMEN

Obesity is a major public health crisis associated with high mortality rates. Previous genome-wide association studies (GWAS) investigating body mass index (BMI) have largely relied on imputed data from European individuals. This study leveraged whole-genome sequencing (WGS) data from 88,873 participants from the Trans-Omics for Precision Medicine (TOPMed) Program, of which 51% were of non-European population groups. We discovered 18 BMI-associated signals (P < 5 × 10-9). Notably, we identified and replicated a novel low frequency single nucleotide polymorphism (SNP) in MTMR3 that was common in individuals of African descent. Using a diverse study population, we further identified two novel secondary signals in known BMI loci and pinpointed two likely causal variants in the POC5 and DMD loci. Our work demonstrates the benefits of combining WGS and diverse cohorts in expanding current catalog of variants and genes confer risk for obesity, bringing us one step closer to personalized medicine.

17.
Clin J Am Soc Nephrol ; 18(11): 1416-1425, 2023 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-37533140

RESUMEN

BACKGROUND: Sickle cell trait affects approximately 8% of Black individuals in the United States, along with many other individuals with ancestry from malaria-endemic regions worldwide. While traditionally considered a benign condition, recent evidence suggests that sickle cell trait is associated with lower eGFR and higher risk of kidney diseases, including kidney failure. The mechanisms underlying these associations remain poorly understood. We used proteomic profiling to gain insight into the pathobiology of sickle cell trait. METHODS: We measured proteomics ( N =1285 proteins assayed by Olink Explore) using baseline plasma samples from 592 Black participants with sickle cell trait and 1:1 age-matched Black participants without sickle cell trait from the prospective Women's Health Initiative cohort. Age-adjusted linear regression was used to assess the association between protein levels and sickle cell trait. RESULTS: In age-adjusted models, 35 proteins were significantly associated with sickle cell trait after correction for multiple testing. Several of the sickle cell trait-protein associations were replicated in Black participants from two independent cohorts (Atherosclerosis Risk in Communities study and Jackson Heart Study) assayed using an orthogonal aptamer-based proteomic platform (SomaScan). Many of the validated sickle cell trait-associated proteins are known biomarkers of kidney function or injury ( e.g. , hepatitis A virus cellular receptor 1 [HAVCR1]/kidney injury molecule-1 [KIM-1], uromodulin [UMOD], ephrins), related to red cell physiology or hemolysis (erythropoietin [EPO], heme oxygenase 1 [HMOX1], and α -hemoglobin stabilizing protein) and/or inflammation (fractalkine, C-C motif chemokine ligand 2/monocyte chemoattractant protein-1 [MCP-1], and urokinase plasminogen activator surface receptor [PLAUR]). A protein risk score constructed from the top sickle cell trait-associated biomarkers was associated with incident kidney failure among those with sickle cell trait during Women's Health Initiative follow-up (odds ratio, 1.32; 95% confidence interval, 1.10 to 1.58). CONCLUSIONS: We identified and replicated the association of sickle cell trait with a number of plasma proteins related to hemolysis, kidney injury, and inflammation.


Asunto(s)
Insuficiencia Renal , Rasgo Drepanocítico , Humanos , Femenino , Estados Unidos , Proteoma , Estudios Prospectivos , Hemólisis , Proteómica , Biomarcadores , Inflamación
18.
Front Psychiatry ; 14: 1145375, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37398583

RESUMEN

Introduction: The U.S. suicide mortality rate has steadily increased during the past two decades, particularly among military veterans; however, the epigenetic basis of suicidal thoughts and behaviors (STB) remains largely unknown. Methods: To address this issue, we conducted an epigenome-wide association study of DNA methylation (DNAm) of peripheral blood samples obtained from 2,712 U.S. military veterans. Results: Three DNAm probes were significantly associated with suicide attempts, surpassing the multiple testing threshold (FDR q-value <0.05), including cg13301722 on chromosome 7, which lies between the genes SLC4A2 and CDK5; cg04724646 in PDE3A; and cg04999352 in RARRES3. cg13301722 was also found to be differentially methylated in the cerebral cortex of suicide decedents in a publicly-available dataset (p = 0.03). Trait enrichment analysis revealed that the CpG sites most strongly associated with STB in the present sample were also associated with smoking, alcohol consumption, maternal smoking, and maternal alcohol consumption, whereas pathway enrichment analysis revealed significant associations with circadian rhythm, adherens junction, insulin secretion, and RAP-1 signaling, each of which was recently associated with suicide attempts in a large, independent genome-wide association study of suicide attempts of veterans. Discussion: Taken together, the present findings suggest that SLC4A2, CDK5, PDE3A, and RARRES3 may play a role in STB. CDK5, a member of the cyclin-dependent kinase family that is highly expressed in the brain and essential for learning and memory, appears to be a particularly promising candidate worthy of future study; however, additional work is still needed to replicate these finding in independent samples.

19.
PLoS Genet ; 19(3): e1010623, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36940203

RESUMEN

Suicidal ideation (SI) often precedes and predicts suicide attempt and death, is the most common suicidal phenotype and is over-represented in veterans. The genetic architecture of SI in the absence of suicide attempt (SA) is unknown, yet believed to have distinct and overlapping risk with other suicidal behaviors. We performed the first GWAS of SI without SA in the Million Veteran Program (MVP), identifying 99,814 SI cases from electronic health records without a history of SA or suicide death (SD) and 512,567 controls without SI, SA or SD. GWAS was performed separately in the four largest ancestry groups, controlling for sex, age and genetic substructure. Ancestry-specific results were combined via meta-analysis to identify pan-ancestry loci. Four genome-wide significant (GWS) loci were identified in the pan-ancestry meta-analysis with loci on chromosomes 6 and 9 associated with suicide attempt in an independent sample. Pan-ancestry gene-based analysis identified GWS associations with DRD2, DCC, FBXL19, BCL7C, CTF1, ANNK1, and EXD3. Gene-set analysis implicated synaptic and startle response pathways (q's<0.05). European ancestry (EA) analysis identified GWS loci on chromosomes 6 and 9, as well as GWS gene associations in EXD3, DRD2, and DCC. No other ancestry-specific GWS results were identified, underscoring the need to increase representation of diverse individuals. The genetic correlation of SI and SA within MVP was high (rG = 0.87; p = 1.09e-50), as well as with post-traumatic stress disorder (PTSD; rG = 0.78; p = 1.98e-95) and major depressive disorder (MDD; rG = 0.78; p = 8.33e-83). Conditional analysis on PTSD and MDD attenuated most pan-ancestry and EA GWS signals for SI without SA to nominal significance, with the exception of EXD3 which remained GWS. Our novel findings support a polygenic and complex architecture for SI without SA which is largely shared with SA and overlaps with psychiatric conditions frequently comorbid with suicidal behaviors.


Asunto(s)
Trastorno Depresivo Mayor , Veteranos , Humanos , Ideación Suicida , Veteranos/psicología , Estudio de Asociación del Genoma Completo , Trastorno Depresivo Mayor/genética , Intento de Suicidio/psicología , Factores de Riesgo
20.
bioRxiv ; 2023 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-36993181

RESUMEN

Studies combining metabolomics and genetics, known as metabolite genome-wide association studies (mGWAS), have provided valuable insights into our understanding of the genetic control of metabolite levels. However, the biological interpretation of these associations remains challenging due to a lack of existing tools to annotate mGWAS gene-metabolite pairs beyond the use of conservative statistical significance threshold. Here, we computed the shortest reactional distance (SRD) based on the curated knowledge of the KEGG database to explore its utility in enhancing the biological interpretation of results from three independent mGWAS, including a case study on sickle cell disease patients. Results show that, in reported mGWAS pairs, there is an excess of small SRD values and that SRD values and p-values significantly correlate, even beyond the standard conservative thresholds. The added-value of SRD annotation is shown for identification of potential false negative hits, exemplified by the finding of gene-metabolite associations with SRD ≤1 that did not reach standard genome-wide significance cut-off. The wider use of this statistic as an mGWAS annotation would prevent the exclusion of biologically relevant associations and can also identify errors or gaps in current metabolic pathway databases. Our findings highlight the SRD metric as an objective, quantitative and easy-to-compute annotation for gene-metabolite pairs that can be used to integrate statistical evidence to biological networks.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA