Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
2.
Artículo en Inglés | MEDLINE | ID: mdl-37937078

RESUMEN

Introduction: Myelodysplastic syndrome (MDS) is a heterogeneous group of clonal hematopoietic disorders characterized by ineffective hematopoiesis, cytopenias, and dysplasia. The gene encoding ten-eleven translocation 2 (tet2), a dioxygenase enzyme that catalyzes the conversion of 5-methylcytosine (5mC) to 5-hydroxymethylcytosine, is a recurrently mutated tumor suppressor gene in MDS and other myeloid malignancies. Previously, we reported a stable zebrafish line with a loss-of-function mutation in the tet2 gene. The tet2m/m-mutant zebrafish developed a pre-MDS state with kidney marrow dysplasia, but normal circulating blood counts by 11 months of age and accompanying anemia, signifying the onset of MDS, by 24 months of age. Methods: In the current study, we collected progenitor cells from the kidney marrows of the adult tet2m/m and tet2wt/wt fish at 4 and 15 months of age and conducted enhanced reduced representation of bisulfite sequencing (ERRBS) and bulk RNA-seq to measure changes in DNA methylation and gene expression of hematopoietic stem and progenitor cells (HSPCs). Results and discussion: A global increase in DNA methylation of gene promoter regions and CpG islands was observed in tet2m/m HSPCs at 4 months of age when compared with the wild type. Furthermore, hypermethylated genes were significantly enriched for targets of SUZ12 and the metal-response-element-binding transcription factor 2 (MTF2)-involved in the polycomb repressive complex 2 (PRC2). However, between 4 and 15 months of age, we observed a paradoxical global decrease in DNA methylation in tet2m/m HSPCs. Gene expression analyses identified upregulation of genes associated with mTORC1 signaling and interferon gamma and alpha responses in tet2m/m HSPCs at 4 months of age when compared with the wild type. Downregulated genes in HSPCs of tet2-mutant fish at 4 months of age were enriched for cell cycle regulation, heme metabolism, and interleukin 2 (IL2)/signal transducer and activator of transcription 5 (STAT5) signaling, possibly related to increased self-renewal and clonal advantage in HSPCs with tet2 loss of function. Finally, there was an overall inverse correlation between overall increased promoter methylation and gene expression.

3.
Sci Rep ; 13(1): 17680, 2023 10 17.
Artículo en Inglés | MEDLINE | ID: mdl-37848499

RESUMEN

Despite the prognostic value of arterial stiffness (AS) and pulsatile hemodynamics (PH) for cardiovascular morbidity and mortality, epigenetic modifications that contribute to AS/PH remain unknown. To gain a better understanding of the link between epigenetics (DNA methylation) and AS/PH, we examined the relationship of eight measures of AS/PH with CpG sites and co-methylated regions using multi-ancestry participants from Trans-Omics for Precision Medicine (TOPMed) Multi-Ethnic Study of Atherosclerosis (MESA) with sample sizes ranging from 438 to 874. Epigenome-wide association analysis identified one genome-wide significant CpG (cg20711926-CYP1B1) associated with aortic augmentation index (AIx). Follow-up analyses, including gene set enrichment analysis, expression quantitative trait methylation analysis, and functional enrichment analysis on differentially methylated positions and regions, further prioritized three CpGs and their annotated genes (cg23800023-ETS1, cg08426368-TGFB3, and cg17350632-HLA-DPB1) for AIx. Among these, ETS1 and TGFB3 have been previously prioritized as candidate genes. Furthermore, both ETS1 and HLA-DPB1 have significant tissue correlations between Whole Blood and Aorta in GTEx, which suggests ETS1 and HLA-DPB1 could be potential biomarkers in understanding pathophysiology of AS/PH. Overall, our findings support the possible role of epigenetic regulation via DNA methylation of specific genes associated with AIx as well as identifying potential targets for regulation of AS/PH.


Asunto(s)
Aterosclerosis , Epigénesis Genética , Humanos , Epigenoma , Factor de Crecimiento Transformador beta3/genética , Medicina de Precisión , Estudio de Asociación del Genoma Completo , Metilación de ADN , Islas de CpG/genética , Aterosclerosis/genética
5.
bioRxiv ; 2023 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-37131653

RESUMEN

Acute myeloid leukemia (AML) is an aggressive disease with complex and heterogeneous biology. Although several genomic classifications have been proposed, there is a growing interest in going beyond genomics to stratify AML. In this study, we profile the sphingolipid family of bioactive molecules in 213 primary AML samples and 30 common human AML cell lines. Using an integrative approach, we identify two distinct sphingolipid subtypes in AML characterized by a reciprocal abundance of hexosylceramide (Hex) and sphingomyelin (SM) species. The two Hex-SM clusters organize diverse samples more robustly than known AML driver mutations and are coupled to latent transcriptional states. Using transcriptomic data, we develop a machine-learning classifier to infer the Hex-SM status of AML cases in TCGA and BeatAML clinical repositories. The analyses show that the sphingolipid subtype with deficient Hex and abundant SM is enriched for leukemic stemness transcriptional programs and comprises an unappreciated high-risk subgroup with poor clinical outcomes. Our sphingolipid-focused examination of AML identifies patients least likely to benefit from standard of care and raises the possibility that sphingolipidomic interventions could switch the subtype of AML patients who otherwise lack targetable alternatives.

7.
Blood Rev ; 55: 100950, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35487785

RESUMEN

Acute myeloid leukemia (AML) is an aggressive, heterogenous malignancy characterized by clonal expansion of bone marrow-derived myeloid progenitor cells. While our current understanding of the molecular and genomic landscape of AML has evolved dramatically and opened avenues for molecularly targeted therapeutics to improve upon standard intensive induction chemotherapy, curative treatments are elusive, particularly in older patients. Responses to current AML treatments are transient and incomplete, necessitating the development of novel treatment strategies to improve outcomes. To this end, harnessing the power of bioactive sphingolipids to treat cancer shows great promise. Sphingolipids are involved in many hallmarks of cancer of paramount importance in AML. Leukemic blast survival is influenced by cellular levels of ceramide, a bona fide pro-death molecule, and its conversion to signaling molecules such as sphingosine-1-phosphate and glycosphingolipids. Preclinical studies demonstrate the efficacy of therapeutics that target dysregulated sphingolipid metabolism as well as their combinatorial synergy with clinically-relevant therapeutics. Thus, increased understanding of sphingolipid dysregulation may be exploited to improve AML patient care and outcomes. This review summarizes the current knowledge of dysregulated sphingolipid metabolism in AML, evaluates how pro-survival sphingolipids promote AML pathogenesis, and discusses the therapeutic potential of targeting these dysregulated sphingolipid pathways.


Asunto(s)
Leucemia Mieloide Aguda , Esfingolípidos , Anciano , Ceramidas/metabolismo , Ceramidas/uso terapéutico , Humanos , Leucemia Mieloide Aguda/tratamiento farmacológico , Leucemia Mieloide Aguda/terapia , Transducción de Señal , Esfingolípidos/metabolismo , Esfingolípidos/uso terapéutico
8.
Sci Transl Med ; 14(635): eabb7695, 2022 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-35263148

RESUMEN

Dysregulation of innate immune signaling pathways is implicated in various hematologic malignancies. However, these pathways have not been systematically examined in acute myeloid leukemia (AML). We report that AML hematopoietic stem and progenitor cells (HSPCs) exhibit a high frequency of dysregulated innate immune-related and inflammatory pathways, referred to as oncogenic immune signaling states. Through gene expression analyses and functional studies in human AML cell lines and patient-derived samples, we found that the ubiquitin-conjugating enzyme UBE2N is required for leukemic cell function in vitro and in vivo by maintaining oncogenic immune signaling states. It is known that the enzyme function of UBE2N can be inhibited by interfering with thioester formation between ubiquitin and the active site. We performed in silico structure-based and cellular-based screens and identified two related small-molecule inhibitors UC-764864/65 that targeted UBE2N at its active site. Using these small-molecule inhibitors as chemical probes, we further revealed the therapeutic efficacy of interfering with UBE2N function. This resulted in the blocking of ubiquitination of innate immune- and inflammatory-related substrates in human AML cell lines. Inhibition of UBE2N function disrupted oncogenic immune signaling by promoting cell death of leukemic HSPCs while sparing normal HSPCs in vitro. Moreover, baseline oncogenic immune signaling states in leukemic cells derived from discrete subsets of patients with AML exhibited a selective dependency on UBE2N function in vitro and in vivo. Our study reveals that interfering with UBE2N abrogates leukemic HSPC function and underscores the dependency of AML cells on UBE2N-dependent oncogenic immune signaling states.


Asunto(s)
Leucemia Mieloide Aguda , Enzimas Ubiquitina-Conjugadoras , Proliferación Celular/genética , Humanos , Leucemia Mieloide Aguda/metabolismo , Oncogenes , Transducción de Señal/genética , Enzimas Ubiquitina-Conjugadoras/antagonistas & inhibidores , Enzimas Ubiquitina-Conjugadoras/genética , Enzimas Ubiquitina-Conjugadoras/metabolismo
9.
Biotechniques ; 72(3): 81-84, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35119307

RESUMEN

Acute myeloid leukemia patients with FMS-like tyrosine kinase 3-internal tandem duplications and mixed lineage leukemia-protein AF9 fusion proteins suffer from poor clinical outcomes. The MOLM-13 acute myeloid leukemia cell line harbors both of these abnormalities and is used in CRISPR experiments to identify disease drivers. However, experimental observations may be biased or inconclusive in the absence of experimentally validated positive control genes. We validated sgRNAs for knockdown of TP53 for cell proliferation and for DCK knockdown and CDA upregulation for cytarabine resistance control genes in MOLM-13 cells. We have provided a detailed CRISPR protocol applicable to both gene knockdown or activation experiments and downstream leukemic phenotype analyses. Inclusion of these controls in CRISPR experiments will enhance the capacity to identify novel myeloid leukemia drivers in MOLM-13 cells.


Asunto(s)
Citarabina , Leucemia Mieloide Aguda , Línea Celular , Línea Celular Tumoral , Proliferación Celular/genética , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas/genética , Citarabina/farmacología , Humanos , Leucemia Mieloide Aguda/tratamiento farmacológico , Leucemia Mieloide Aguda/genética
10.
Nat Commun ; 12(1): 5406, 2021 09 13.
Artículo en Inglés | MEDLINE | ID: mdl-34518533

RESUMEN

DNA methylation is aberrant in cancer, but the dynamics, regulatory role and clinical implications of such epigenetic changes are still poorly understood. Here, reduced representation bisulfite sequencing (RRBS) profiles of 1538 breast tumors and 244 normal breast tissues from the METABRIC cohort are reported, facilitating detailed analysis of DNA methylation within a rich context of genomic, transcriptional, and clinical data. Tumor methylation from immune and stromal signatures are deconvoluted leading to the discovery of a tumor replication-linked clock with genome-wide methylation loss in non-CpG island sites. Unexpectedly, methylation in most tumor CpG islands follows two replication-independent processes of gain (MG) or loss (ML) that we term epigenomic instability. Epigenomic instability is correlated with tumor grade and stage, TP53 mutations and poorer prognosis. After controlling for these global trans-acting trends, as well as for X-linked dosage compensation effects, cis-specific methylation and expression correlations are uncovered at hundreds of promoters and over a thousand distal elements. Some of these targeted known tumor suppressors and oncogenes. In conclusion, this study demonstrates that global epigenetic instability can erode cancer methylomes and expose them to localized methylation aberrations in-cis resulting in transcriptional changes seen in tumors.


Asunto(s)
Neoplasias de la Mama/genética , Metilación de ADN , Epigénesis Genética , Epigenómica/métodos , Regulación Neoplásica de la Expresión Génica , Estudios de Cohortes , Islas de CpG/genética , Replicación del ADN/genética , Femenino , Genoma Humano/genética , Inestabilidad Genómica/genética , Genómica/métodos , Humanos , Células MCF-7 , Mutación , Regiones Promotoras Genéticas/genética , Análisis de Supervivencia
11.
Front Cell Dev Biol ; 9: 630067, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33816475

RESUMEN

Cell fate decisions during development are governed by multi-factorial regulatory mechanisms including chromatin remodeling, DNA methylation, binding of transcription factors to specific loci, RNA transcription and protein synthesis. However, the mechanisms by which such regulatory "dimensions" coordinate cell fate decisions are currently poorly understood. Here we quantified the multi-dimensional molecular changes that occur in mouse embryonic stem cells (mESCs) upon depletion of Estrogen related receptor beta (Esrrb), a key pluripotency regulator. Comparative analyses of expression changes subsequent to depletion of Esrrb or Nanog, indicated that a system of interlocked feed-forward loops involving both factors, plays a central part in regulating the timing of mESC fate decisions. Taken together, our meta-analyses support a hierarchical model in which pluripotency is maintained by an Oct4-Sox2 regulatory module, while the timing of differentiation is regulated by a Nanog-Esrrb module.

12.
Blood ; 138(8): 662-673, 2021 08 26.
Artículo en Inglés | MEDLINE | ID: mdl-33786584

RESUMEN

Chronic natural killer large granular lymphocyte (NK-LGL) leukemia, also referred to as chronic lymphoproliferative disorder of NK cells, is a rare disorder defined by prolonged expansion of clonal NK cells. Similar prevalence of STAT3 mutations in chronic T-LGL and NK-LGL leukemia is suggestive of common pathogenesis. We undertook whole-genome sequencing to identify mutations unique to NK-LGL leukemia. The results were analyzed to develop a resequencing panel that was applied to 58 patients. Phosphatidylinositol 3-kinase pathway gene mutations (PIK3CD/PIK3AP1) and TNFAIP3 mutations were seen in 5% and 10% of patients, respectively. TET2 was exceptional in that mutations were present in 16 (28%) of 58 patient samples, with evidence that TET2 mutations can be dominant and exclusive to the NK compartment. Reduced-representation bisulfite sequencing revealed that methylation patterns were significantly altered in TET2 mutant samples. The promoter of TET2 and that of PTPRD, a negative regulator of STAT3, were found to be methylated in additional cohort samples, largely confined to the TET2 mutant group. Mutations in STAT3 were observed in 19 (33%) of 58 patient samples, 7 of which had concurrent TET2 mutations. Thrombocytopenia and resistance to immunosuppressive agents were uniquely observed in those patients with only TET2 mutation (Games-Howell post hoc test, P = .0074; Fisher's exact test, P = .00466). Patients with STAT3 mutation, inclusive of those with TET2 comutation, had lower hematocrit, hemoglobin, and absolute neutrophil count compared with STAT3 wild-type patients (Welch's t test, P ≤ .015). We present the discovery of TET2 mutations in chronic NK-LGL leukemia and evidence that it identifies a unique molecular subtype.


Asunto(s)
Proteínas de Unión al ADN/genética , Dioxigenasas/genética , Leucemia Linfocítica Granular Grande/genética , Mutación , Proteínas de Neoplasias/genética , Sistema de Registros , Enfermedad Crónica , Proteínas de Unión al ADN/sangre , Dioxigenasas/sangre , Femenino , Humanos , Leucemia Linfocítica Granular Grande/sangre , Masculino , Proteínas de Neoplasias/sangre
14.
Cancer Discov ; 11(6): 1542-1561, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33500244

RESUMEN

Patients with acute myeloid leukemia (AML) frequently relapse after chemotherapy, yet the mechanism by which AML reemerges is not fully understood. Herein, we show that primary AML cells enter a senescence-like phenotype following chemotherapy in vitro and in vivo. This is accompanied by induction of senescence/inflammatory and embryonic diapause transcriptional programs, with downregulation of MYC and leukemia stem cell genes. Single-cell RNA sequencing suggested depletion of leukemia stem cells in vitro and in vivo, and enrichment for subpopulations with distinct senescence-like cells. This senescence effect was transient and conferred superior colony-forming and engraftment potential. Entry into this senescence-like phenotype was dependent on ATR, and persistence of AML cells was severely impaired by ATR inhibitors. Altogether, we propose that AML relapse is facilitated by a senescence-like resilience phenotype that occurs regardless of their stem cell status. Upon recovery, these post-senescence AML cells give rise to relapsed AMLs with increased stem cell potential. SIGNIFICANCE: Despite entering complete remission after chemotherapy, relapse occurs in many patients with AML. Thus, there is an urgent need to understand the relapse mechanism in AML and the development of targeted treatments to improve outcome. Here, we identified a senescence-like resilience phenotype through which AML cells can survive and repopulate leukemia.This article is highlighted in the In This Issue feature, p. 1307.


Asunto(s)
Leucemia Mieloide Aguda/tratamiento farmacológico , Recurrencia Local de Neoplasia/tratamiento farmacológico , Células Madre Neoplásicas/citología , Inducción de Remisión , Animales , Línea Celular Tumoral/citología , Humanos , Leucemia Mieloide Aguda/patología , Ratones , Ratones Endogámicos NOD , Recurrencia Local de Neoplasia/patología , Fenotipo
15.
iScience ; 23(12): 101844, 2020 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-33376973

RESUMEN

Liquid biopsies based on cell-free DNA (cfDNA) or exosomes provide a noninvasive approach to monitor human health and disease but have not been utilized for astronauts. Here, we profile cfDNA characteristics, including fragment size, cellular deconvolution, and nucleosome positioning, in an astronaut during a year-long mission on the International Space Station, compared to his identical twin on Earth and healthy donors. We observed a significant increase in the proportion of cell-free mitochondrial DNA (cf-mtDNA) inflight, and analysis of post-flight exosomes in plasma revealed a 30-fold increase in circulating exosomes and patient-specific protein cargo (including brain-derived peptides) after the year-long mission. This longitudinal analysis of astronaut cfDNA during spaceflight and the exosome profiles highlights their utility for astronaut health monitoring, as well as cf-mtDNA levels as a potential biomarker for physiological stress or immune system responses related to microgravity, radiation exposure, and the other unique environmental conditions of spaceflight.

16.
Cell Rep ; 33(10): 108435, 2020 12 08.
Artículo en Inglés | MEDLINE | ID: mdl-33242411

RESUMEN

Telomeres, repetitive terminal features of chromosomes essential for maintaining genome integrity, shorten with cell division, lifestyle factors and stresses, and environmental exposures, and so they provide a robust biomarker of health, aging, and age-related diseases. We assessed telomere length dynamics (changes over time) in three unrelated astronauts before, during, and after 1-year or 6-month missions aboard the International Space Station (ISS). Similar to our results for National Aeronautics and Space Administration's (NASA's) One-Year Mission twin astronaut (Garrett-Bakelman et al., 2019), significantly longer telomeres were observed during spaceflight for two 6-month mission astronauts. Furthermore, telomere length shortened rapidly after return to Earth for all three crewmembers and, overall, telomere length tended to be shorter after spaceflight than before spaceflight. Consistent with chronic exposure to the space radiation environment, signatures of persistent DNA damage responses were also detected, including mitochondrial and oxidative stress, inflammation, and telomeric and chromosomal aberrations, which together provide potential mechanistic insight into spaceflight-specific telomere elongation.


Asunto(s)
Daño del ADN/genética , Reparación del ADN/fisiología , Telómero/genética , Adulto , Astronautas , ADN/genética , ADN/efectos de la radiación , Roturas del ADN de Doble Cadena , Daño del ADN/efectos de la radiación , Reparación del ADN/genética , Reparación del ADN/efectos de la radiación , Relación Dosis-Respuesta en la Radiación , Medio Ambiente Extraterrestre , Femenino , Humanos , Masculino , Vuelo Espacial , Telómero/metabolismo , Telómero/efectos de la radiación , Factores de Tiempo , Ingravidez/efectos adversos
17.
PLoS One ; 15(10): e0240829, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33104722

RESUMEN

Histone post-translational modifications (PTMs) create a powerful regulatory mechanism for maintaining chromosomal integrity in cells. Histone acetylation and methylation, the most widely studied histone PTMs, act in concert with chromatin-associated proteins to control access to genetic information during transcription. Alterations in cellular histone PTMs have been linked to disease states and have crucial biomarker and therapeutic potential. Traditional bottom-up mass spectrometry of histones requires large numbers of cells, typically one million or more. However, for some cell subtype-specific studies, it is difficult or impossible to obtain such large numbers of cells and quantification of rare histone PTMs is often unachievable. An established targeted LC-MS/MS method was used to quantify the abundance of histone PTMs from cell lines and primary human specimens. Sample preparation was modified by omitting nuclear isolation and reducing the rounds of histone derivatization to improve detection of histone peptides down to 1,000 cells. In the current study, we developed and validated a quantitative LC-MS/MS approach tailored for a targeted histone assay of 75 histone peptides with as few as 10,000 cells. Furthermore, we were able to detect and quantify 61 histone peptides from just 1,000 primary human stem cells. Detection of 37 histone peptides was possible from 1,000 acute myeloid leukemia patient cells. We anticipate that this revised method can be used in many applications where achieving large cell numbers is challenging, including rare human cell populations.


Asunto(s)
Histonas/genética , Histonas/metabolismo , Proteómica/métodos , Acetilación , Línea Celular , Cromatografía Liquida/métodos , Humanos , Metilación , Péptidos/química , Procesamiento Proteico-Postraduccional/genética , Espectrometría de Masas en Tándem/métodos
18.
Genome Biol ; 21(1): 240, 2020 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-32894181

RESUMEN

A key challenge in epigenetics is to determine the biological significance of epigenetic variation among individuals. We present Coordinate Covariation Analysis (COCOA), a computational framework that uses covariation of epigenetic signals across individuals and a database of region sets to annotate epigenetic heterogeneity. COCOA is the first such tool for DNA methylation data and can also analyze any epigenetic signal with genomic coordinates. We demonstrate COCOA's utility by analyzing DNA methylation, ATAC-seq, and multi-omic data in supervised and unsupervised analyses, showing that COCOA provides new understanding of inter-sample epigenetic variation. COCOA is available on Bioconductor ( http://bioconductor.org/packages/COCOA ).


Asunto(s)
Epigénesis Genética , Epigenómica/métodos , Heterogeneidad Genética , Programas Informáticos , Neoplasias de la Mama/genética , Metilación de ADN , Humanos , Anotación de Secuencia Molecular
19.
J Exp Med ; 216(10): 2362-2377, 2019 10 07.
Artículo en Inglés | MEDLINE | ID: mdl-31371381

RESUMEN

Despite significant efforts to improve therapies for acute myeloid leukemia (AML), clinical outcomes remain poor. Understanding the mechanisms that regulate the development and maintenance of leukemic stem cells (LSCs) is important to reveal new therapeutic opportunities. We have identified CD97, a member of the adhesion class of G protein-coupled receptors (GPCRs), as a frequently up-regulated antigen on AML blasts that is a critical regulator of blast function. High levels of CD97 correlate with poor prognosis, and silencing of CD97 reduces disease aggressiveness in vivo. These phenotypes are due to CD97's ability to promote proliferation, survival, and the maintenance of the undifferentiated state in leukemic blasts. Collectively, our data credential CD97 as a promising therapeutic target on LSCs in AML.


Asunto(s)
Antígenos CD/biosíntesis , Crisis Blástica/metabolismo , Regulación Leucémica de la Expresión Génica , Leucemia Mieloide Aguda/metabolismo , Proteínas de Neoplasias/biosíntesis , Células Madre Neoplásicas/metabolismo , Receptores Acoplados a Proteínas G/biosíntesis , Regulación hacia Arriba , Animales , Antígenos CD/genética , Crisis Blástica/genética , Crisis Blástica/patología , Proliferación Celular , Supervivencia Celular , Femenino , Humanos , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patología , Masculino , Ratones , Ratones Noqueados , Proteínas de Neoplasias/genética , Células Madre Neoplásicas/patología , Receptores Acoplados a Proteínas G/genética
20.
Cancer Discov ; 9(7): 872-889, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31076479

RESUMEN

Disruption of epigenetic regulation is a hallmark of acute myeloid leukemia (AML), but epigenetic therapy is complicated by the complexity of the epigenome. Herein, we developed a long-term primary AML ex vivo platform to determine whether targeting different epigenetic layers with 5-azacytidine and LSD1 inhibitors would yield improved efficacy. This combination was most effective in TET2 mut AML, where it extinguished leukemia stem cells and particularly induced genes with both LSD1-bound enhancers and cytosine-methylated promoters. Functional studies indicated that derepression of genes such as GATA2 contributes to drug efficacy. Mechanistically, combination therapy increased enhancer-promoter looping and chromatin-activating marks at the GATA2 locus. CRISPRi of the LSD1-bound enhancer in patient-derived TET2 mut AML was associated with dampening of therapeutic GATA2 induction. TET2 knockdown in human hematopoietic stem/progenitor cells induced loss of enhancer 5-hydroxymethylation and facilitated LSD1-mediated enhancer inactivation. Our data provide a basis for rational targeting of cooperating aberrant promoter and enhancer epigenetic marks driven by mutant epigenetic modifiers. SIGNIFICANCE: Somatic mutations of genes encoding epigenetic modifiers are a hallmark of AML and potentially disrupt many components of the epigenome. Our study targets two different epigenetic layers at promoters and enhancers that cooperate to aberrant gene silencing, downstream of the actions of a mutant epigenetic regulator.This article is highlighted in the In This Issue feature, p. 813.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Histona Demetilasas/antagonistas & inhibidores , Histona Demetilasas/genética , Leucemia Mieloide Aguda/tratamiento farmacológico , Leucemia Mieloide Aguda/genética , Animales , Azacitidina/farmacología , ADN (Citosina-5-)-Metiltransferasa 1/antagonistas & inhibidores , Metilación de ADN/efectos de los fármacos , Proteínas de Unión al ADN/genética , Dioxigenasas , Elementos de Facilitación Genéticos , Epigenoma , Factor de Transcripción GATA2/genética , Factor de Transcripción GATA2/metabolismo , Genes Supresores de Tumor , Humanos , Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/patología , Ratones , Ratones Endogámicos NOD , Ratones SCID , Células Madre Neoplásicas/metabolismo , Células Madre Neoplásicas/patología , Regiones Promotoras Genéticas/efectos de los fármacos , Proteínas Proto-Oncogénicas/genética , Distribución Aleatoria , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de Xenoinjerto
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...