Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Heliyon ; 10(9): e30365, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38720704

RESUMEN

Objectives: Determining the best available therapy for carbapenem-resistant Acinetobacter baumannii (CRAB) infections is a challenge. Cefiderocol is an attractive alternative drug effective against many resistance mechanisms in Gram-negative bacteria. However, its place in the treatment of Acinetobacter baumannii infections remains unclear and much debated, with contradictory results. Methods: We describe here the case of a 37-year-old man with ventilator-associated bacteraemic CRAB pneumonia in an intensive care unit. He was initially treated with a combination of colistin and tigecycline, and was then switched onto colistin and cefiderocol. We then used a new accessible protocol to test 30 CRAB isolates (OXA-23/OXA-24/OXA-58/NDM-1) for adaptive resistance to cefiderocol (ARC) after exposure to this drug. Results: After clinical failure with the initial combination, we noted a significant clinical improvement in the patient on the second combination, leading to clinical cure. No ARC was detected in the two OXA-23 case-CRAB isolates. All NDM-1 CRAB isolates were resistant to cefiderocol in standard tests; the OXA-23, OXA-24 and OXA-58 CRAB isolates presented 84.2 %, 50 % and 0 % ARC, respectively. Conclusions: ARC is not routinely assessed for CRAB isolates despite frequently being reported in susceptible isolates (69.2 %). Subpopulations displaying ARC may account for treatment failure, but this hypothesis should be treated with caution in the absence of robust clinical data. The two main findings of this work are that (i) cefiderocol monotherapy should probably not be recommended for OXA-23/24 CRAB infections and (ii) the characterisation of carbapenemases in CRAB strains may be informative for clinical decision-making.

2.
PLoS Negl Trop Dis ; 17(9): e0011606, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37676863

RESUMEN

BACKGROUND: Bartonella spp. are fastidious bacteria frequently identified as the cause of blood culture-negative (BCN) endocarditis. However, Bartonella infections are difficult to diagnose in routine laboratory testing and their incidence is probably underestimated. We investigated the epidemiological and clinical features of Bartonella endocarditis cases diagnosed between 2009 and 2021 on Reunion Island (Southwest Indian Ocean). METHOD: We retrospectively included all patients diagnosed with Bartonella endocarditis at Reunion Island University Hospital during this period. Endocarditis was diagnosed on the basis of microbiological findings, including serological tests (IFA) and PCR on cardiac valves, and the modified Duke criteria. We used then the multispacer typing (MST) method to genotype the available Bartonella strains. FINDINGS: We report 12 cases of B. quintana endocarditis on Reunion Island (83.3% in men, median patient age: 32 years). All the patients originated from the Comoros archipelago. The traditional risk factors for B. quintana infection (homelessness, alcoholism, exposure to body lice) were absent in all but two of the patients, who reported head louse infestations in childhood. Previous heart disease leading to valve dysfunction was recorded in 50% of patients. All patients underwent cardiac valve surgery and antimicrobial therapy with a regimen including doxycycline. All patients presented high C-reactive protein concentrations, anemia and negative blood cultures. The titer of IgG antibodies against Bartonella sp. exceeded 1:800 in 42% of patients. Specific PCR on cardiac valves confirmed the diagnosis of B. quintana endocarditis in all patients. Genotyping by the MST method was performed on four strains detected in preserved excised valves and was contributive for three, which displayed the MST6 genotype. CONCLUSIONS: Bartonella quintana is an important cause of infective endocarditis in the Comoros archipelago and should be suspected in patients with mitral valve dysfunction and BCN from this area.


Asunto(s)
Bartonella quintana , Bartonella , Endocarditis , Masculino , Humanos , Adulto , Bartonella quintana/genética , Océano Índico , Estudios Retrospectivos
3.
Emerg Infect Dis ; 29(8): 1630-1633, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37486209

RESUMEN

Clinical, epidemiologic, and microbiologic analyses revealed emergence of 26 cases of Corynebacterium diphtheriae species complex infections on Réunion Island, France, during 2015-2020. Isolates were genetically diverse, indicating circulation and local transmission of several diphtheria sublineages. Clinicians should remain aware of the risk for diphtheria and improve diagnostic methods and patient management.


Asunto(s)
Infecciones por Corynebacterium , Corynebacterium diphtheriae , Difteria , Humanos , Difteria/microbiología , Toxina Diftérica , Infecciones por Corynebacterium/microbiología , Reunión/epidemiología , Corynebacterium , Francia/epidemiología
5.
J Clin Microbiol ; 60(6): e0242221, 2022 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-35510500

RESUMEN

Achromobacter spp. are nonfermenting Gram-negative bacilli mainly studied among cystic fibrosis (CF) patients. The identification of the 19 species within the genus is time-consuming (nrdA-sequencing), thus data concerning the distribution of the species are limited to specific studies. Recently, we built a database using MALDI-TOF mass spectrometry (MS) (Bruker) that allows rapid and accurate species identification and detection of the multiresistant epidemic clones: A. xylosoxidans ST137 spreading among CF patients in various French and Belgium centers, and A. ruhlandii DES in Denmark. Here, we first assessed whether species identification could be achieved with our database solely by analysis of MS spectra without availability of isolates. Then, we conducted a multicentric study describing the distribution of Achromobacter species and of the clone ST137 among French CF centers. We collected and analyzed with our local database the spectra of Achromobacter isolates from 193 patients (528 samples) from 12 centers during 2020. In total, our approach enabled to conclude for 502/528 samples (95.1%), corresponding to 181 patients. Eleven species were detected, only five being involved in chronic colonization, A. xylosoxidans (86.4%), A. insuavis (9.1%), A. mucicolens (2.3%), A. marplatensis (1.1%) and A. genogroup 3 (1.1%). This study confirmed the high prevalence of A. xylosoxidans in chronic colonizations and the circulation of the clone A. xylosoxidans ST137 in France: four patients in two centers. The present study is the first to report the distribution of Achromobacter species from CF patients samples using retrospective MALDI-TOF/MS data. This easy approach could enable future large-scale epidemiological studies.


Asunto(s)
Achromobacter , Fibrosis Quística , Infecciones por Bacterias Gramnegativas , Achromobacter/genética , Fibrosis Quística/epidemiología , Infecciones por Bacterias Gramnegativas/diagnóstico , Infecciones por Bacterias Gramnegativas/epidemiología , Humanos , Estudios Retrospectivos , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos , Análisis Espectral
6.
J Antimicrob Chemother ; 77(5): 1254-1262, 2022 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-35194647

RESUMEN

BACKGROUND: Extended-spectrum ß-lactamase-producing Escherichia coli (ESBL-Ec) is a major cause of infections worldwide. An understanding of the reservoirs and modes of transmission of these pathogens is essential, to tackle their increasing frequency. OBJECTIVES: We investigated the contributions of various compartments (humans, animals, environment), to human colonization or infection with ESBL-Ec over a 3 year period, on an island. METHODS: The study was performed on Reunion Island (Southwest Indian Ocean). We collected ESBL-Ec isolates prospectively from humans, wastewater and livestock between April 2015 and December 2018. Human specimens were recovered from a regional surveillance system representative of the island's health facilities. These isolates were compared with those from livestock and urban/rural wastewater, by whole-genome sequencing. RESULTS: We collected 410 ESBL-Ec isolates: 161 from humans, 161 from wastewater and 88 from animals. Phylogenomic analysis demonstrated high diversity (100 STs), with different STs predominating among isolates from humans (ST131, ST38, ST10) and animals (ST57, ST156). The large majority (90%) of the STs, including ST131, were principally associated with a single compartment. The CTX-M-15, CTX-M-27 and CTX-M-14 enzymes were most common in humans/human wastewater, whereas CTX-M-1 predominated in animals. Isolates of human and animal origin had different plasmids carrying blaCTX-M genes, with the exception of a conserved IncI1-ST3 blaCTX-M-1 plasmid. CONCLUSIONS: These molecular data suggest that, despite their high level of contamination, animals are not a major source of the ESBL-Ec found in humans living on this densely populated high-income island. Public health policies should therefore focus primarily on human-to-human transmission, to prevent human infections with ESBL-Ec.


Asunto(s)
Infecciones por Escherichia coli , Salud Única , Animales , Antibacterianos , Escherichia coli , Infecciones por Escherichia coli/epidemiología , Infecciones por Escherichia coli/veterinaria , Humanos , Ganado , Tipificación de Secuencias Multilocus , Plásmidos , Reunión/epidemiología , Aguas Residuales , beta-Lactamasas/genética
7.
J Antimicrob Chemother ; 77(4): 926-929, 2022 03 31.
Artículo en Inglés | MEDLINE | ID: mdl-35029278

RESUMEN

BACKGROUND: Acquired antimicrobial resistance among Achromobacter isolates from cystic fibrosis (CF) patients is frequent. Data concerning the mechanisms involved are scarce. The role of the AxyXY-OprZ and AxyEF-OprN Resistance Nodulation Division (RND) efflux systems has been demonstrated, but not that of AxyABM. OBJECTIVES: To explore the role of efflux systems in the acquired multiresistance observed in a one-step mutant selected after ofloxacin exposure. METHODS: The in vitro resistant mutant NCF-39-Bo2 and its parental strain NCF-39 (MICs of meropenem of 8 and 0.19 mg/L, of ceftazidime of 12 and 3 mg/L, of cefiderocol of 0.094 and 0.032 mg/L and of ciprofloxacin of 8 and 1.5 mg/L, respectively) were investigated by RNA-seq and WGS. Gene inactivation and reverse transcription quantitative PCR (RT-qPCR) were used to explore the role of the efflux systems of interest. RESULTS: RNA-seq showed that the AxyABM efflux system was overproduced (about 40-fold) in the in vitro mutant NCF-39-Bo2 versus its parental strain NCF-39. A substitution in AxyR, the putative regulator of AxyABM, was detected in NCF-39-Bo2. Gene inactivation of axyB (encoding the transporter component) in NCF-39-Bo2 led to a decrease in MICs of ciprofloxacin (5-fold), meropenem (64-fold), ceftazidime (12-fold) and cefiderocol (24-fold). Inactivation of axyB in the clinical isolate AXX-H2 harbouring a phenotype of resistance close to that of NCF-39-Bo2 enhanced the activity of the same molecules, especially meropenem. CONCLUSIONS: AxyABM overproduction is involved in acquired resistance of Achromobacter to ciprofloxacin, meropenem and ceftazidime, antibiotics widely used in CF patients, and increases the MIC of the new promising antibiotic cefiderocol.


Asunto(s)
Achromobacter denitrificans , Achromobacter , Infecciones por Bacterias Gramnegativas , Achromobacter/genética , Achromobacter denitrificans/genética , Antibacterianos/farmacología , Humanos , Pruebas de Sensibilidad Microbiana
8.
Antimicrob Resist Infect Control ; 10(1): 151, 2021 10 21.
Artículo en Inglés | MEDLINE | ID: mdl-34674756

RESUMEN

Concomitant prevention of SARS-CoV-2 and extensively drug-resistant bacteria transmission is a difficult challenge in intensive care units dedicated to COVID-19 patients. We report a nosocomial cluster of four patients carrying NDM-1 plasmid-encoded carbapenemase-producing Enterobacter cloacae. Two main factors may have contributed to cross-transmission: misuse of gloves and absence of change of personal protective equipment, in the context of COVID-19-associated shortage. This work highlights the importance of maintaining infection control measures to prevent CPE cross-transmission despite the difficult context and that this type of outbreak can potentially involve several species of Enterobacterales.


Asunto(s)
Enterobacteriaceae Resistentes a los Carbapenémicos/aislamiento & purificación , Coinfección/epidemiología , Infección Hospitalaria/epidemiología , Enterobacter cloacae/aislamiento & purificación , Infecciones por Enterobacteriaceae/epidemiología , Control de Infecciones/métodos , Proteínas Bacterianas , COVID-19 , Enterobacteriaceae Resistentes a los Carbapenémicos/genética , Brotes de Enfermedades , Enterobacter cloacae/genética , Infecciones por Enterobacteriaceae/microbiología , Infecciones por Enterobacteriaceae/transmisión , Humanos , Unidades de Cuidados Intensivos , Equipo de Protección Personal , SARS-CoV-2 , beta-Lactamasas
9.
J Clin Microbiol ; 59(10): e0094621, 2021 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-34346714

RESUMEN

Achromobacter spp. are increasingly reported among cystic fibrosis patients. Genotyping requires time-consuming methods such as multilocus sequence typing or pulsed-field gel electrophoresis. Therefore, data on the prevalence of multiresistant epidemic clones, especially A. xylosoxidans ST137 (AxST137) and the Danish epidemic strain A. ruhlandii (DES), are lacking. We recently developed and published a database for Achromobacter species identification by matrix-assisted laser desorption-ionization-time of flight mass spectrometry (MALDI-TOF MS; Bruker Daltonics). The aim of this study was to evaluate the ability of the MALDI-TOF MS to distinguish these multiresistant epidemic clones within Achromobacter species. All the spectra of A. xylosoxidans (n = 1,571) and A. ruhlandii (n = 174) used to build the local database were analyzed by ClinProTools, MALDI Biotyper PCA, MALDI Biotyper dendrogram, and flexAnalysis software for biomarker peak detection. Two hundred two isolates (including 48 isolates of AxST137 and 7 of DES) were tested. Specific biomarker peaks were identified: absent peak at m/z 6,651 for AxST137 isolates and present peak at m/z 9,438 for DES isolates. All tested isolates were well typed by our local database and clustered within distinct groups (ST137 or non-ST137 and DES or non-DES) no matter the MALDI-TOF software or only by simple visual inspection of the spectra by any user. The use of MALDI-TOF MS allowed us to identify isolates of A. xylosoxidans belonging to the AxST137 clone that spread in France and Belgium (the Belgian epidemic clone) and of A. ruhlandii belonging to the DES clone. This tool will help the implementation of segregation measures to avoid interpatient transmission of these resistant clones.


Asunto(s)
Achromobacter denitrificans , Achromobacter , Fibrosis Quística , Epidemias , Achromobacter denitrificans/genética , Células Clonales , Fibrosis Quística/complicaciones , Fibrosis Quística/epidemiología , Humanos , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...