Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Anal Chem ; 90(22): 13434-13442, 2018 11 20.
Artículo en Inglés | MEDLINE | ID: mdl-30335966

RESUMEN

Fast-scan cyclic voltammetry with a carbon-fiber microelectrode is an increasingly popular technique for in vivo measurements of electroactive neurotransmitters, most notably dopamine. Calibration of these electrodes is essential for many uses, but it is complicated by the many factors that affect an electrode's sensitivity when it is implanted in neural tissue. Experienced practitioners of fast-scan cyclic voltammetry are well aware that an electrode's sensitivity to dopamine depends on both the size and shape of the electrode's background waveform. In vitro electrode calibration is still the standard method, although a strategy for in situ calibration based on the size of the electrode's background waveform has previously been published. We reasoned that the accuracy and transferability of in situ calibration could be improved by using principal component regression to capture information contained in the shape of the background waveform. We use leave-one-out cross-validation to estimate the ability of this strategy to predict unknown electrodes and to compare its performance with that of the total-background-current strategy. The principal-component-regression strategy has significantly greater predictive performance than the total-background-current strategy, and the resulting calibration models can be transferred across independent laboratories. Importantly, multivariate quality-control statistics establish the applicability of the strategy to in vivo data. Adoption of the principal-component-regression strategy for in situ calibration will improve the interpretation of in vivo fast-scan cyclic voltammetry data.


Asunto(s)
Técnicas Electroquímicas/métodos , Análisis de Componente Principal , Animales , Encéfalo/metabolismo , Calibración , Fibra de Carbono/química , Exactitud de los Datos , Dopamina/análisis , Técnicas Electroquímicas/instrumentación , Microelectrodos , Ratas , Análisis de Regresión , Sensibilidad y Especificidad
2.
IEEE Trans Neural Syst Rehabil Eng ; 26(1): 51-59, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29324402

RESUMEN

This paper presents a novel compressive sensing framework for recording brain dopamine levels with fast-scan cyclic voltammetry (FSCV) at a carbon-fiber microelectrode. Termed compressive FSCV (C-FSCV), this approach compressively samples the measured total current in each FSCV scan and performs basic FSCV processing steps, e.g., background current averaging and subtraction, directly with compressed measurements. The resulting background-subtracted faradaic currents, which are shown to have a block-sparse representation in the discrete cosine transform domain, are next reconstructed from their compressively sampled counterparts with the block sparse Bayesian learning algorithm. Using a previously recorded dopamine dataset, consisting of electrically evoked signals recorded in the dorsal striatum of an anesthetized rat, the C-FSCV framework is shown to be efficacious in compressing and reconstructing brain dopamine dynamics and associated voltammograms with high fidelity (correlation coefficient, ), while achieving compression ratio, CR, values as high as ~ 5. Moreover, using another set of dopamine data recorded 5 minutes after administration of amphetamine (AMPH) to an ambulatory rat, C-FSCV once again compresses (CR = 5) and reconstructs the temporal pattern of dopamine release with high fidelity ( ), leading to a true-positive rate of 96.4% in detecting AMPH-induced dopamine transients.


Asunto(s)
Química Encefálica , Dopamina/metabolismo , Algoritmos , Anfetamina/farmacología , Animales , Química Encefálica/efectos de los fármacos , Dopamina/análisis , Inhibidores de Captación de Dopamina/farmacología , Técnicas Electroquímicas , Microelectrodos , Ratas , Ratas Sprague-Dawley
3.
J Pharmacol Exp Ther ; 359(3): 460-470, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27733628

RESUMEN

Modafinil (MOD) exhibits therapeutic efficacy for treating sleep and psychiatric disorders; however, its mechanism is not completely understood. Compared with other psychostimulants inhibiting dopamine (DA) uptake, MOD weakly interacts with the dopamine transporter (DAT) and modestly elevates striatal dialysate DA, suggesting additional targets besides DAT. However, the ability of MOD to induce wakefulness is abolished with DAT knockout, conversely suggesting that DAT is necessary for MOD action. Another psychostimulant target, but one not established for MOD, is activation of phasic DA signaling. This communication mode during which burst firing of DA neurons generates rapid changes in extracellular DA, the so-called DA transients, is critically implicated in reward learning. Here, we investigate MOD effects on phasic DA signaling in the striatum of urethane-anesthetized rats with fast-scan cyclic voltammetry. We found that MOD (30-300 mg/kg i.p.) robustly increases the amplitude of electrically evoked phasic-like DA signals in a time- and dose-dependent fashion, with greater effects in dorsal versus ventral striata. MOD-induced enhancement of these electrically evoked amplitudes was mediated preferentially by increased DA release compared with decreased DA uptake. Principal component regression of nonelectrically evoked recordings revealed negligible changes in basal DA with high-dose MOD (300 mg/kg i.p.). Finally, in the presence of the D2 DA antagonist, raclopride, low-dose MOD (30 mg/kg i.p.) robustly elicited DA transients in dorsal and ventral striata. Taken together, these results suggest that activation of phasic DA signaling is an important mechanism underlying the clinical efficacy of MOD.


Asunto(s)
Compuestos de Bencidrilo/farmacología , Dopamina/metabolismo , Neostriado/citología , Neostriado/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Animales , Transporte Biológico/efectos de los fármacos , Estimulación Eléctrica , Masculino , Modafinilo , Neostriado/metabolismo , Ratas , Ratas Sprague-Dawley
4.
Eur J Neurosci ; 43(12): 1661-73, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-27038339

RESUMEN

The reinforcing effects of abused drugs are mediated by their ability to elevate nucleus accumbens dopamine. Amphetamine (AMPH) was historically thought to increase dopamine by an action potential-independent, non-exocytotic type of release called efflux, involving reversal of dopamine transporter function and driven by vesicular dopamine depletion. Growing evidence suggests that AMPH also acts by an action potential-dependent mechanism. Indeed, fast-scan cyclic voltammetry demonstrates that AMPH activates dopamine transients, reward-related phasic signals generated by burst firing of dopamine neurons and dependent on intact vesicular dopamine. Not established for AMPH but indicating a shared mechanism, endocannabinoids facilitate this activation of dopamine transients by broad classes of abused drugs. Here, using fast-scan cyclic voltammetry coupled to pharmacological manipulations in awake rats, we investigated the action potential and endocannabinoid dependence of AMPH-induced elevations in nucleus accumbens dopamine. AMPH increased the frequency, amplitude and duration of transients, which were observed riding on top of slower dopamine increases. Surprisingly, silencing dopamine neuron firing abolished all AMPH-induced dopamine elevations, identifying an action potential-dependent origin. Blocking cannabinoid type 1 receptors prevented AMPH from increasing transient frequency, similar to reported effects on other abused drugs, but not from increasing transient duration and inhibiting dopamine uptake. Thus, AMPH elevates nucleus accumbens dopamine by eliciting transients via cannabinoid type 1 receptors and promoting the summation of temporally coincident transients, made more numerous, larger and wider by AMPH. Collectively, these findings are inconsistent with AMPH eliciting action potential-independent dopamine efflux and vesicular dopamine depletion, and support endocannabinoids facilitating phasic dopamine signalling as a common action in drug reinforcement.


Asunto(s)
Potenciales de Acción , Anfetamina/administración & dosificación , Dopaminérgicos/administración & dosificación , Dopamina/metabolismo , Endocannabinoides/fisiología , Neuronas/efectos de los fármacos , Núcleo Accumbens/efectos de los fármacos , Núcleo Accumbens/fisiología , Animales , Antagonistas de Receptores de Cannabinoides/administración & dosificación , Masculino , Neuronas/fisiología , Núcleo Accumbens/metabolismo , Piperidinas/administración & dosificación , Pirazoles/administración & dosificación , Ratas , Ratas Sprague-Dawley , Receptor Cannabinoide CB1/agonistas , Receptor Cannabinoide CB1/fisiología , Rimonabant , Bloqueadores de los Canales de Sodio/administración & dosificación , Tetrodotoxina/administración & dosificación , Área Tegmental Ventral/efectos de los fármacos , Área Tegmental Ventral/fisiología
5.
IEEE Trans Biomed Circuits Syst ; 10(3): 654-67, 2016 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-26390501

RESUMEN

This paper presents a 3.3×3.2 mm(2) system-on-chip (SoC) fabricated in AMS 0.35 µm 2P/4M CMOS for closed-loop regulation of brain dopamine. The SoC uniquely integrates neurochemical sensing, on-the-fly chemometrics, and feedback-controlled electrical stimulation to realize a "neurochemostat" by maintaining brain levels of electrically evoked dopamine between two user-set thresholds. The SoC incorporates a 90 µW, custom-designed, digital signal processing (DSP) unit for real-time processing of neurochemical data obtained by 400 V/s fast-scan cyclic voltammetry (FSCV) with a carbon-fiber microelectrode (CFM). Specifically, the DSP unit executes a chemometrics algorithm based upon principal component regression (PCR) to resolve in real time electrically evoked brain dopamine levels from pH change and CFM background-current drift, two common interferents encountered using FSCV with a CFM in vivo. Further, the DSP unit directly links the chemically resolved dopamine levels to the activation of the electrical microstimulator in on-off-keying (OOK) fashion. Measured results from benchtop testing, flow injection analysis (FIA), and biological experiments with an anesthetized rat are presented.


Asunto(s)
Técnicas Biosensibles/instrumentación , Encéfalo/metabolismo , Dopamina/análisis , Técnicas Electroquímicas/instrumentación , Animales , Estimulación Eléctrica , Técnicas Electroquímicas/métodos , Diseño de Equipo , Microelectrodos , Análisis de Componente Principal , Ratas , Ratas Sprague-Dawley , Telemetría/instrumentación , Telemetría/métodos
6.
J Chem Neuroanat ; 66-67: 28-39, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25900708

RESUMEN

Fast-scan cyclic voltammetry is a powerful technique for monitoring rapid changes in extracellular neurotransmitter levels in the brain. In vivo fast-scan cyclic voltammetry has been used extensively in mammalian models to characterize dopamine signals in both anesthetized and awake preparations, but has yet to be applied to a non-mammalian vertebrate. The goal of this study was to establish in vivo fast-scan cyclic voltammetry in a songbird, the European starling, to facilitate real-time measurements of extracellular catecholamine levels in the avian striatum. In urethane-anesthetized starlings, changes in catecholamine levels were evoked by electrical stimulation of the ventral tegmental area and measured at carbon-fiber microelectrodes positioned in the medial and lateral striata. Catecholamines were elicited by different stimulations, including trains related to phasic dopamine signaling in the rat, and were analyzed to quantify presynaptic mechanisms governing exocytotic release and neuronal uptake. Evoked extracellular catecholamine dynamics, maximal amplitude of the evoked catecholamine signal, and parameters for catecholamine release and uptake did not differ between striatal regions and were similar to those determined for dopamine in the rat dorsomedial striatum under similar conditions. Chemical identification of measured catecholamine by its voltammogram was consistent with the presence of both dopamine and norepinephrine in striatal tissue content. However, the high ratio of dopamine to norepinephrine in tissue content and the greater sensitivity of the carbon-fiber microelectrode to dopamine compared to norepinephrine favored the measurement of dopamine. Thus, converging evidence suggests that dopamine was the predominate analyte of the electrically evoked catecholamine signal measured in the striatum by fast-scan cyclic voltammetry. Overall, comparisons between the characteristics of these evoked signals suggested a similar presynaptic regulation of dopamine in the starling and rat striatum. Fast-scan cyclic voltammetry thus has the potential to be an invaluable tool for investigating the neural underpinnings of behavior in birds.


Asunto(s)
Catecolaminas/análisis , Catecolaminas/biosíntesis , Cuerpo Estriado/metabolismo , Electrofisiología/métodos , Estorninos/metabolismo , Animales , Cromatografía Líquida de Alta Presión , Estimulación Eléctrica , Femenino , Inmunohistoquímica , Masculino , Ratas
7.
Artículo en Inglés | MEDLINE | ID: mdl-26737451

RESUMEN

This paper reports on field-programmable gate array (FPGA) implementation of a digital signal processing (DSP) unit for real-time processing of neurochemical data obtained by fast-scan cyclic voltammetry (FSCV) at a carbonfiber microelectrode (CFM). The DSP unit comprises a decimation filter and two embedded processors to process the FSCV data obtained by an oversampling recording front-end and differentiate the target analyte from interferents in real time with a chemometrics algorithm using principal component regression (PCR). Interfaced with an integrated, FSCV-sensing front-end, the DSP unit successfully resolves the dopamine response from that of pH change and background-current drift, two common dopamine interferents, in flow injection analysis involving bolus injection of mixed solutions, as well as in biological tests involving electrically evoked, transient dopamine release in the forebrain of an anesthetized rat.


Asunto(s)
Dopamina/análisis , Técnicas Electroquímicas/métodos , Procesamiento de Señales Asistido por Computador , Animales , Carbono , Fibra de Carbono , Técnicas Electroquímicas/instrumentación , Diseño de Equipo , Concentración de Iones de Hidrógeno , Masculino , Microelectrodos , Ratas , Ratas Sprague-Dawley
8.
Trends Neurosci ; 37(4): 200-10, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24656971

RESUMEN

Phasic increases in brain dopamine are required for cue-directed reward seeking. Although compelling within the framework of appetitive behavior, the view that illicit drugs hijack reward circuits by hyperactivating these dopamine transients is inconsistent with established psychostimulant pharmacology. However, recent work reclassifying amphetamine (AMPH), cocaine, and other addictive dopamine-transporter inhibitors (DAT-Is) supports transient hyperactivation as a unifying hypothesis of abused drugs. We argue here that reclassification also identifies generating burst firing by dopamine neurons as a keystone action. Unlike natural rewards, which are processed by sensory systems, drugs act directly on the brain. Consequently, to mimic natural rewards and exploit reward circuits, dopamine transients must be elicited de novo. Of available drug targets, only burst firing achieves this essential outcome.


Asunto(s)
Encéfalo/efectos de los fármacos , Encéfalo/fisiopatología , Dopamina/metabolismo , Drogas Ilícitas/farmacología , Animales , Proteínas de Transporte de Dopamina a través de la Membrana Plasmática/antagonistas & inhibidores , Proteínas de Transporte de Dopamina a través de la Membrana Plasmática/metabolismo , Neuronas Dopaminérgicas/efectos de los fármacos , Neuronas Dopaminérgicas/fisiología , Humanos , Modelos Neurológicos , Trastornos Relacionados con Sustancias/fisiopatología
9.
Neurotox Res ; 26(2): 152-67, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24562969

RESUMEN

Phasic dopamine (DA) signaling, during which burst firing by DA neurons generates short-lived elevations in extracellular DA in terminal fields called DA transients, is implicated in reinforcement learning. Disrupted phasic DA signaling is proposed to link DA depletions and cognitive-behavioral impairment in methamphetamine (METH)-induced neurotoxicity. Here, we further investigated this disruption by assessing effects of METH pretreatment on DA transients elicited by a drug cocktail of raclopride, a D2 DA receptor antagonist, and nomifensine, an inhibitor of the dopamine transporter (DAT). One advantage of this approach is that pharmacological activation provides a large, high-quality data set of transients elicited by endogenous burst firing of DA neurons for analysis of regional differences and neurotoxicity. These pharmacologically evoked DA transients were measured in the dorsomedial (DM) and dorsolateral (DL) striatum of urethane-anesthetized rats by fast-scan cyclic voltammetry. Electrically evoked DA levels were also recorded to quantify DA release and uptake, and DAT binding was determined by means of autoradiography to index DA denervation. Pharmacologically evoked DA transients in intact animals exhibited a greater amplitude and frequency and shorter duration in the DM compared to the DL striatum, despite similar pre- and post-drug assessments of DA release and uptake in both sub-regions as determined from the electrically evoked DA signals. METH pretreatment reduced transient activity. The most prominent effect of METH pretreatment on transients across striatal sub-region was decreased amplitude, which mirrored decreased DAT binding and was accompanied by decreased DA release. Overall, these results identify marked intrastriatal differences in the activity of DA transients that appear independent of presynaptic mechanisms for DA release and uptake and further support disrupted phasic DA signaling mediated by decreased DA release in rats with METH-induced neurotoxicity.


Asunto(s)
Estimulantes del Sistema Nervioso Central/toxicidad , Cuerpo Estriado/efectos de los fármacos , Cuerpo Estriado/fisiopatología , Dopamina/metabolismo , Metanfetamina/toxicidad , Síndromes de Neurotoxicidad/fisiopatología , Animales , Proteínas de Transporte de Dopamina a través de la Membrana Plasmática/metabolismo , Neuronas Dopaminérgicas/efectos de los fármacos , Neuronas Dopaminérgicas/fisiología , Masculino , Terminales Presinápticos/efectos de los fármacos , Terminales Presinápticos/fisiología , Ratas Sprague-Dawley , Transmisión Sináptica/efectos de los fármacos , Transmisión Sináptica/fisiología
10.
Artículo en Inglés | MEDLINE | ID: mdl-25570384

RESUMEN

This paper reports the hardware implementation of a digital signal processing (DSP) unit for real-time processing of data obtained by fast-scan cyclic voltammetry (FSCV) at a carbon-fiber microelectrode (CFM), an electrochemical transduction technique for high-resolution monitoring of brain neurochemistry. Implemented on a field-programmable gate array (FPGA), the DSP unit comprises a decimation filter and an embedded processor to process the oversampled FSCV data and obtain in real time a temporal profile of concentration variation along with a chemical signature to identify the target neurotransmitter. Interfaced with an integrated, FSCV-sensing front-end, the DSP unit can successfully process FSCV data obtained by bolus injection of dopamine in a flow cell as well as electrically evoked, transient dopamine release in the dorsal striatum of an anesthetized rat.


Asunto(s)
Sistemas de Computación , Técnicas Electroquímicas/instrumentación , Técnicas Electroquímicas/métodos , Electrónica , Estadística como Asunto , Animales , Carbono , Fibra de Carbono , Dopamina/análisis , Estimulación Eléctrica , Electricidad , Masculino , Microelectrodos , Neostriado/fisiología , Ratas Sprague-Dawley , Procesamiento de Señales Asistido por Computador , Factores de Tiempo
11.
Appl Phys Lett ; 102(25): 253107, 2013 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-23918991

RESUMEN

We show the technical feasibility of coating and micro patterning boron-doped ultrananocrystalline diamond (UNCD®) on metal microwires and of applying them as microsensors for the detection of dopamine in vivo using fast-scan cyclic voltammetry. UNCD electrode surface consistently generated electrochemical signals with high signal-to-noise ratio of >800 using potassium ferrocyanide-ferricyanide redox couple. Parylene patterned UNCD microelectrodes were effectively applied to detect dopamine reliably in vitro using flow injection analysis with a detection limit of 27 nM and in the striatum of the anesthetized rat during electrical stimulation of dopamine neurons.

12.
PLoS One ; 8(5): e60763, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23671560

RESUMEN

Amphetamine, a highly addictive drug with therapeutic efficacy, exerts paradoxical effects on the fundamental communication modes employed by dopamine neurons in modulating behavior. While amphetamine elevates tonic dopamine signaling by depleting vesicular stores and driving non-exocytotic release through reverse transport, this psychostimulant also activates phasic dopamine signaling by up-regulating vesicular dopamine release. We hypothesized that these seemingly incongruent effects arise from amphetamine depleting the reserve pool and enhancing the readily releasable pool. This novel hypothesis was tested using in vivo voltammetry and stimulus trains of varying duration to access different vesicular stores. We show that amphetamine actions are stimulus dependent in the dorsal striatum. Specifically, amphetamine up-regulated vesicular dopamine release elicited by a short-duration train, which interrogates the readily releasable pool, but depleted release elicited by a long-duration train, which interrogates the reserve pool. These opposing actions of vesicular dopamine release were associated with concurrent increases in tonic and phasic dopamine responses. A link between vesicular depletion and tonic signaling was supported by results obtained for amphetamine in the ventral striatum and cocaine in both striatal sub-regions, which demonstrated augmented vesicular release and phasic signals only. We submit that amphetamine differentially targeting dopamine stores reconciles the paradoxical activation of tonic and phasic dopamine signaling. Overall, these results further highlight the unique and region-distinct cellular mechanisms of amphetamine and may have important implications for its addictive and therapeutic properties.


Asunto(s)
Estimulantes del Sistema Nervioso Central/farmacología , Cocaína/farmacología , Cuerpo Estriado/efectos de los fármacos , Dextroanfetamina/farmacología , Dopamina/metabolismo , Potenciales de Acción , Animales , Cuerpo Estriado/fisiología , Dopamina/fisiología , Inhibidores de Captación de Dopamina/farmacología , Neuronas Dopaminérgicas/efectos de los fármacos , Neuronas Dopaminérgicas/fisiología , Estimulación Eléctrica , Masculino , Ratas , Ratas Sprague-Dawley , Vesículas Secretoras/metabolismo , Transmisión Sináptica/efectos de los fármacos
13.
Eur J Neurosci ; 38(1): 2078-88, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23574406

RESUMEN

Methamphetamine (METH) is a highly addictive drug that is also neurotoxic to central dopamine (DA) systems. Although striatal DA depletions induced by METH are associated with behavioral and cognitive impairments, the link between these phenomena remains poorly understood. Previous work in both METH-pretreated animals and the 6-hydroxydopamine model of Parkinson's disease suggests that a disruption of phasic DA signaling, which is important for learning and goal-directed behavior, may be such a link. However, previous studies used electrical stimulation to elicit phasic-like DA responses and were also performed under anesthesia, which alters DA neuron activity and presynaptic function. Here we investigated the consequences of METH-induced DA terminal loss on both electrically evoked phasic-like DA signals and so-called 'spontaneous' phasic DA transients measured by voltammetry in awake rats. Not ostensibly attributable to discrete stimuli, these subsecond DA changes may play a role in enhancing reward-cue associations. METH pretreatment reduced tissue DA content in the dorsomedial striatum and nucleus accumbens by ~55%. Analysis of phasic-like DA responses elicited by reinforcing stimulation revealed that METH pretreatment decreased their amplitude and underlying mechanisms for release and uptake to a similar degree as DA content in both striatal subregions. Most importantly, characteristics of DA transients were altered by METH-induced DA terminal loss, with amplitude and frequency decreased and duration increased. These results demonstrate for the first time that denervation of DA neurons alters naturally occurring DA transients and are consistent with diminished phasic DA signaling as a plausible mechanism linking METH-induced striatal DA depletions and cognitive deficits.


Asunto(s)
Dopaminérgicos/toxicidad , Dopamina/metabolismo , Neuronas Dopaminérgicas/efectos de los fármacos , Metanfetamina/toxicidad , Transmisión Sináptica , Animales , Cuerpo Estriado/efectos de los fármacos , Cuerpo Estriado/metabolismo , Cuerpo Estriado/fisiología , Neuronas Dopaminérgicas/metabolismo , Neuronas Dopaminérgicas/fisiología , Masculino , Núcleo Accumbens/efectos de los fármacos , Núcleo Accumbens/metabolismo , Núcleo Accumbens/fisiología , Ratas , Ratas Sprague-Dawley
14.
J Neurochem ; 125(4): 555-65, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23480199

RESUMEN

Methamphetamine-induced partial dopamine depletions are associated with impaired basal ganglia function, including decreased preprotachykinin mRNA expression and impaired transcriptional activation of activity-regulated, cytoskeleton-associated (Arc) gene in striatum. Recent work implicates deficits in phasic dopamine signaling as a potential mechanism linking methamphetamine-induced dopamine loss to impaired basal ganglia function. This study thus sought to establish a causal link between phasic dopamine transmission and altered basal ganglia function by determining whether the deficits in striatal neuron gene expression could be restored by increasing phasic dopamine release. Three weeks after pretreatment with saline or a neurotoxic regimen of methamphetamine, rats underwent phasic- or tonic-like stimulation of ascending dopamine neurons. Striatal gene expression was examined using in situ hybridization histochemistry. Phasic-like, but not tonic-like, stimulation induced immediate-early genes Arc and zif268 in both groups, despite the partial striatal dopamine denervation in methamphetamine-pretreated rats, with the Arc expression occurring in presumed striatonigral efferent neurons. Phasic-like stimulation also restored preprotachykinin mRNA expression. These results suggest that disruption of phasic dopamine signaling likely underlies methamphetamine-induced impairments in basal ganglia function, and that restoring phasic dopamine signaling may be a viable approach to manage long-term consequences of methamphetamine-induced dopamine loss on basal ganglia functions.


Asunto(s)
Cuerpo Estriado/fisiología , Dopamina/fisiología , Neuronas Dopaminérgicas/fisiología , Haz Prosencefálico Medial/fisiología , Metanfetamina/toxicidad , Síndromes de Neurotoxicidad/fisiopatología , Trastornos Relacionados con Anfetaminas/genética , Trastornos Relacionados con Anfetaminas/fisiopatología , Animales , Estimulantes del Sistema Nervioso Central/toxicidad , Cuerpo Estriado/efectos de los fármacos , Proteínas del Citoesqueleto/genética , Desnervación/métodos , Neuronas Dopaminérgicas/efectos de los fármacos , Proteína 1 de la Respuesta de Crecimiento Precoz/genética , Estimulación Eléctrica/métodos , Expresión Génica/efectos de los fármacos , Expresión Génica/fisiología , Genes Inmediatos-Precoces/genética , Masculino , Haz Prosencefálico Medial/efectos de los fármacos , Proteínas del Tejido Nervioso/genética , Síndromes de Neurotoxicidad/genética , Precursores de Proteínas/genética , ARN Mensajero/metabolismo , Ratas , Ratas Sprague-Dawley , Taquicininas/genética
15.
J Neurochem ; 125(3): 373-85, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23406303

RESUMEN

Amphetamine has well-established actions on pre-synaptic dopamine signaling, such as inhibiting uptake and degradation, activating synthesis, depleting vesicular stores, and promoting dopamine-transporter reversal and non-exocytotic release. Recent in vivo studies have identified an additional mechanism: augmenting vesicular release. In this study, we investigated how amphetamine elicits this effect. Our hypothesis was that amphetamine enhances vesicular dopamine release in dorsal and ventral striata by differentially targeting dopamine synthesis and degradation. In urethane-anesthetized rats, we employed voltammetry to monitor dopamine, electrical stimulation to deplete stores or assess vesicular release and uptake, and pharmacology to isolate degradation and synthesis. While amphetamine increased electrically evoked dopamine levels, inhibited uptake, and up-regulated vesicular release in both striatal sub-regions in controls, this psychostimulant elicited region-specific effects on evoked levels and vesicular release but not uptake in drug treatments. Evoked levels better correlated with vesicular release compared with uptake, supporting enhanced vesicular release as an important amphetamine mechanism. Taken together, these results suggested that amphetamine enhances vesicular release in the dorsal striatum by activating dopamine synthesis and inhibiting dopamine degradation, but targeting an alternative mechanism in the ventral striatum. Region-distinct activation of vesicular dopamine release highlights complex cellular actions of amphetamine and may have implications for its behavioral effects.


Asunto(s)
Anfetaminas/farmacología , Ganglios Basales/efectos de los fármacos , Estimulantes del Sistema Nervioso Central/farmacología , Dopamina/metabolismo , Animales , Esquema de Medicación , Interacciones Farmacológicas , Estimulación Eléctrica , Inhibidores Enzimáticos/farmacología , Masculino , Inhibidores de la Monoaminooxidasa/farmacología , Análisis Multivariante , Pargilina/farmacología , Ratas , Ratas Sprague-Dawley , Factores de Tiempo , alfa-Metiltirosina/farmacología
16.
Mayo Clin Proc ; 87(8): 760-5, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22809886

RESUMEN

Essential tremor is often markedly reduced during deep brain stimulation simply by implanting the stimulating electrode before activating neurostimulation. Referred to as the microthalamotomy effect, the mechanisms of this unexpected consequence are thought to be related to microlesioning targeted brain tissue, that is, a microscopic version of tissue ablation in thalamotomy. An alternate possibility is that implanting the electrode induces immediate neurochemical release. Herein, we report the experiment performing with real-time fast-scan cyclic voltammetry to quantify neurotransmitter concentrations in human subjects with essential tremor during deep brain stimulation. The results show that the microthalamotomy effect is accompanied by local neurochemical changes, including adenosine release.


Asunto(s)
Adenosina/metabolismo , Estimulación Encefálica Profunda , Temblor Esencial/terapia , Anciano , Anciano de 80 o más Años , Encéfalo/patología , Técnicas Electroquímicas , Electroquímica , Femenino , Humanos , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Monitoreo Fisiológico , Tecnología Inalámbrica
17.
J Neurochem ; 119(6): 1162-72, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-21806614

RESUMEN

High doses of amphetamine (AMPH) are thought to disrupt normal patterns of action potential-dependent dopaminergic neurotransmission by depleting vesicular stores of dopamine (DA) and inducing robust non-exocytotic DA release or efflux via dopamine transporter (DAT) reversal. However, these cardinal AMPH actions have been difficult to establish definitively in vivo. Here, we use fast-scan cyclic voltammetry (FSCV) in the urethane-anesthetized rat to evaluate the effects of 10 and 20 mg/kg AMPH on vesicular DA release and DAT function in dorsal and ventral striata. An equivalent high dose of cocaine (40 mg/kg) was also examined for comparison to psychostimulants acting preferentially by DAT inhibition. Parameters describing exocytotic DA release and neuronal DA uptake were determined from dynamic DA signals evoked by mild electrical stimulation previously established to be reinforcing. High-sensitivity FSCV with nanomolar detection was used to monitor changes in the background voltammetric signal as an index of DA efflux. Both doses of AMPH and cocaine markedly elevated evoked DA levels over the entire 2-h time course in the dorsal and ventral striatum. These increases were mediated by augmented vesicular DA release and diminished DA uptake typically acting concurrently. AMPH, but not cocaine, induced a slow, DA-like rise in some baseline recordings. However, this effect was highly variable in amplitude and duration, modest, and generally not present at all. These data thus describe a mechanistically similar activation of action potential-dependent dopaminergic neurotransmission by AMPH and cocaine in vivo. Moreover, DA efflux appears to be a unique, but secondary, AMPH action.


Asunto(s)
Anfetaminas/farmacología , Anestésicos Locales/farmacología , Estimulantes del Sistema Nervioso Central/farmacología , Cocaína/farmacología , Dopamina/metabolismo , Exocitosis/efectos de los fármacos , Análisis de Varianza , Animales , Ganglios Basales/citología , Ganglios Basales/efectos de los fármacos , Biofisica , Relación Dosis-Respuesta a Droga , Sinergismo Farmacológico , Estimulación Eléctrica/métodos , Electroquímica , Masculino , Ratas , Ratas Sprague-Dawley
18.
J Neurochem ; 118(4): 668-76, 2011 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-21668447

RESUMEN

Neurotoxic doses of methamphetamine (METH) are known to cause depletions in striatal dopamine (DA) tissue content. However, the effects of METH-induced insults on dopaminergic neurotransmission are not fully understood. Here, we employed fast-scan cyclic voltammetry at a carbon-fiber microelectrode in the anesthetized rat striatum to assess the effects of a neurotoxic regimen of METH on phasic and tonic modes of dopaminergic signaling and underlying mechanisms of DA release and uptake. Extracellular DA was electrically evoked by stimulation of the medial forebrain bundle mimicking tonic and phasic firing patterns for dopaminergic cells and was monitored simultaneously in both the dorsomedial and dorsolateral striatum. Kinetic analysis of evoked recordings determined parameters describing DA release and uptake. Striatal DA tissue content was quantified by high performance liquid chromatography with electrochemical detection. METH-pretreatment (four doses of 7.5 or 10.0 mg/kg s.c.) induced DA depletions of ∼ 40% on average, which are reported in both striatal subregions. METH pre-treatment significantly decreased the amplitude of signals evoked by phasic, but not tonic, stimulation. Parameters for DA release and uptake were also similarly reduced by ∼ 40%, consistent with effects on evoked phasic-like responses and DA tissue content. Taken together, these results suggest that METH-pretreatment selectively diminishes phasic, but not tonic, dopaminergic signaling in the dorsal striatum.


Asunto(s)
Estimulantes del Sistema Nervioso Central/toxicidad , Cuerpo Estriado/fisiopatología , Dopamina/fisiología , Metanfetamina/toxicidad , Síndromes de Neurotoxicidad/fisiopatología , Transducción de Señal/fisiología , Algoritmos , Animales , Dopamina/metabolismo , Estimulación Eléctrica , Fenómenos Electrofisiológicos , Espacio Extracelular/metabolismo , Cinética , Masculino , Microelectrodos , Neuronas/fisiología , Oxidopamina , Enfermedad de Parkinson Secundaria/fisiopatología , Ratas , Ratas Sprague-Dawley , Simpatectomía Química , Simpaticolíticos
19.
J Neurochem ; 117(6): 937-48, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21443523

RESUMEN

Amphetamine (AMPH) is thought to disrupt normal patterns of action potential-dependent dopaminergic signaling by depleting dopamine (DA) vesicular stores and promoting non-exocytotic DA efflux. Voltammetry in brain slices concurrently demonstrates these key drug effects, along with competitive inhibition of neuronal DA uptake. Here, we perform comparable kinetic and voltammetric analyses in vivo to determine whether AMPH acts qualitatively and quantitatively similar in the intact brain. Fast-scan cyclic voltammetry measured extracellular DA in dorsal and ventral striata of urethane-anesthetized rats. Electrically evoked recordings were analyzed to determine K(m) and V(max) for DA uptake and vesicular DA release, while background voltammetric current indexed basal DA concentration. AMPH (0.5, 3, and 10 mg/kg i.p.) robustly increased evoked DA responses in both striatal subregions. The predominant contributor to these elevated levels was competitive uptake inhibition, as exocytotic release was unchanged in the ventral striatum and only modestly decreased in the dorsal striatum. Increases in basal DA levels were not detected. These results are consistent with AMPH augmenting action potential-dependent dopaminergic signaling in vivo across a wide, behaviorally relevant dose range. Future work should be directed at possible causes for the distinct in vitro and in vivo pharmacology of AMPH.


Asunto(s)
Potenciales de Acción/efectos de los fármacos , Anfetamina/farmacología , Estimulantes del Sistema Nervioso Central/farmacología , Cuerpo Estriado/efectos de los fármacos , Dopamina/fisiología , Animales , Cuerpo Estriado/fisiología , Estimulación Eléctrica , Masculino , Ratas , Ratas Sprague-Dawley , Transducción de Señal
20.
Artículo en Inglés | MEDLINE | ID: mdl-21096069

RESUMEN

This paper reports on a miniaturized device for wireless monitoring of extracellular dopamine levels in the brain of an ambulatory rat using fast-scan cyclic voltammetry at a carbon-fiber microelectrode. The device comprises integrated circuitry for neurochemical recording fabricated in 0.5-microm double-poly triple-metal CMOS technology, which is assembled and packaged on a miniature rigid-flex substrate together with a few external components for supply generation, biasing, and chip programming. The device operates from a single 3-V battery, weighs 2.3 g (including the battery), and upon implantation successfully captures the effects of the psychostimulant amphetamine on electrically and non-electrically evoked dopamine neurotransmission in the caudateputamen region of an ambulatory rat's forebrain.


Asunto(s)
Dopamina/análisis , Técnicas Electroquímicas/instrumentación , Miniaturización/instrumentación , Monitoreo Ambulatorio/instrumentación , Tecnología Inalámbrica/instrumentación , Anfetamina/farmacología , Animales , Masculino , Ratas , Ratas Sprague-Dawley
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...