Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Radiat Biol ; 100(2): 256-267, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-37747697

RESUMEN

PURPOSE: Docetaxel (DXL), a noted radiosensitizer, is one of the few chemotherapy drugs approved for castration-resistant prostate cancer (CRPC), though only a fraction of CRPCs respond to it. CAV-1, a critical regulator of radioresistance, has been known to modulate DXL and radiation effects. Combining DXL with radiotherapy may create a synergistic anticancer effect through CAV-1 and improve CRPC patients' response to therapy. Here, we investigate the effectiveness and molecular characteristics of DXL and radiation combination therapy in vitro. MATERIALS AND METHODS: We used live/dead assays to determine the IC50 of DXL for PC3, DU-145, and TRAMP-C1 cells. Colony formation assay was used to determine the radioresponse of the same cells treated with radiation with/without IC50 DXL (4, 8, and 12 Gy). We performed gene expression analysis on public transcriptomic data collected from human-derived prostate cancer cell lines (C4-2, PC3, DU-145, and LNCaP) treated with DXL for 8, 16, and 72 hours. Cell cycle arrest and protein expression were assessed using flow cytometry and western blot, respectively. RESULTS: Compared to radiation alone, combination therapy with DXL significantly increased CRPC death in PC3 (1.48-fold, p < .0001), DU-145 (1.64-fold, p < .05), and TRAMP-C1 (1.13-fold, p < .05) at 4 Gy of radiation. Gene expression of CRPC treated with DXL revealed downregulated genes related to cell cycle regulation and upregulated genes related to immune activation and oxidative stress. Confirming the results, G2/M cell cycle arrest was significantly increased after treatment with DXL and radiation. CAV-1 protein expression was decreased after DXL treatment in a dose-dependent manner; furthermore, CAV-1 copy number was strongly associated with poor response to therapy in CRPC patients. CONCLUSIONS: Our results suggest that DXL sensitizes CRPC cells to radiation by downregulating CAV-1. DXL + radiation combination therapy may be effective at treating CRPC, especially subtypes associated with high CAV-1 expression, and should be studied further.


Asunto(s)
Neoplasias de la Próstata Resistentes a la Castración , Masculino , Humanos , Docetaxel/farmacología , Docetaxel/uso terapéutico , Neoplasias de la Próstata Resistentes a la Castración/radioterapia , Línea Celular Tumoral , Proliferación Celular
2.
Toxicol Res ; 38(2): 205-224, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35415078

RESUMEN

Approximately 7% of pregnant women in the United States use electronic-cigarette (e-cig) devices during pregnancy. There is, however, no scientific evidence to support e-cig use as being 'safe' during pregnancy. Little is known about the effects of fetal exposures to e-cig aerosols on lung alveologenesis. In the present study, we tested the hypothesis that in utero exposure to e-cig aerosol impairs lung alveologenesis and pulmonary function in neonates. Pregnant BALB/c mice were exposed 2 h a day for 20 consecutive days during gestation to either filtered air or cinnamon-flavored e-cig aerosol (36 mg/mL of nicotine). Lung tissue was collected in offspring during lung alveologenesis on postnatal day (PND) 5 and PND11. Lung function was measured at PND11. Exposure to e-cig aerosol in utero led to a significant decrease in body weights at birth which was sustained through PND5. At PND5, in utero e-cig exposures dysregulated genes related to Wnt signaling and epigenetic modifications in both females (~ 120 genes) and males (40 genes). These alterations were accompanied by reduced lung fibrillar collagen content at PND5-a time point when collagen content is close to its peak to support alveoli formation. In utero exposure to e-cig aerosol also increased the Newtonian resistance of offspring at PND11, suggesting a narrowing of the conducting airways. At PND11, in females, transcriptomic dysregulation associated with epigenetic alterations was sustained (17 genes), while WNT signaling dysregulation was largely resolved (10 genes). In males, at PND11, the expression of only 4 genes associated with epigenetics was dysregulated, while 16 Wnt related-genes were altered. These data demonstrate that in utero exposures to cinnamon-flavored e-cig aerosols alter lung structure and function and induce sex-specific molecular signatures during lung alveologenesis in neonatal mice. This may reflect epigenetic programming affecting lung disease development later in life.

4.
Sci Rep ; 5: 16011, 2015 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-26525715

RESUMEN

Limited training, high cost, and low equipment mobility leads to inaccuracies in decision making and is concerning with serious ocular injuries such as suspected ruptured globe or post-operative infections. Here, we present a novel point-of-service (POS) quantitative ascorbic acid (AA) assay with use of the OcuCheck Biosensor. The present work describes the development and clinical testing of the paper-based biosensor that measures the changes in electrical resistance of the enzyme-plated interdigitated electrodes to quantify the level of AA present in ocular fluid. We have demonstrated the proof-of-concept of the biosensor testing 16 clinical samples collected from aqueous humor of patients undergoing therapeutic anterior chamber paracentesis. Comparing with gold standard colorimetric assay for AA concentration, OcuCheck showed accuracy of >80%, sensitivity of >88% and specificity of >71%. At present, there are no FDA-approved POS tests that can directly measures AA concentration levels in ocular fluid. We envisage that the device can be realized as a handheld, battery powered instrument that will have high impact on glaucoma care and point-of-care diagnostics of penetrating ocular globe injuries.


Asunto(s)
Humor Acuoso/metabolismo , Ácido Ascórbico/análisis , Técnicas Biosensibles/métodos , Oftalmopatías/diagnóstico , Acrilatos/química , Técnicas Biosensibles/instrumentación , Cromatografía Líquida de Alta Presión , Técnicas Electroquímicas , Electrodos , Grafito/química , Humanos , Espectrometría de Masas , Paracentesis , Sistemas de Atención de Punto , Poliestirenos/química , Sensibilidad y Especificidad , Espectrometría Raman
5.
ACS Nano ; 9(11): 10695-10718, 2015 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-26435333

RESUMEN

Repurposing of existing cancer drugs to overcome their physical limitations, such as insolubility, represents an attractive strategy to achieve enhanced therapeutic efficacy and broaden the range of clinical applications. Such an approach also promises to offer substantial cost savings in drug development efforts. Here we repurposed FDA-approved topical agent bexarotene (Targretin), currently in limited use for cutaneous manifestations of T-cell lymphomas, and re-engineer it for use in solid tumor applications by forming self-assembling nanobubbles. Physico-chemical characterization studies of the novel prodrug nanobubbles demonstrated their stability, enhanced target cell internalization capability, and highly controlled release profile in response to application of focused ultrasound energy. Using an in vitro model of hepatocellular carcinoma and an in vivo large animal model of liver ablation, we demonstrate the effectiveness of bexarotene prodrug nanobubbles when used in conjunction with catheter-based ultrasound, thereby highlighting the therapeutic promise of this trimodal approach.


Asunto(s)
Reposicionamiento de Medicamentos , Hipertermia Inducida , Neoplasias Hepáticas/diagnóstico por imagen , Neoplasias Hepáticas/terapia , Tetrahidronaftalenos/uso terapéutico , Ultrasonido , Animales , Bexaroteno , Catéteres , Terapia Combinada , Modelos Animales de Enfermedad , Electricidad , Electroforesis , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Células Hep G2 , Humanos , Concentración de Iones de Hidrógeno , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patología , Simulación de Dinámica Molecular , Nanopartículas/química , Profármacos/síntesis química , Profármacos/uso terapéutico , Teoría Cuántica , Receptor alfa X Retinoide/agonistas , Receptor alfa X Retinoide/metabolismo , Espectrometría Raman , Sus scrofa , Tetrahidronaftalenos/síntesis química , Termodinámica , Ultrasonografía
6.
ACS Nano ; 6(10): 8847-56, 2012 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-22897498

RESUMEN

Surface immobilized biomolecular probes are used in many areas of biomedical research, such as genomics, proteomics, immunology, and pathology. Although the structural conformations of small DNA and peptide molecules in free solution are well studied both theoretically and experimentally, the conformation of small biomolecules bound on surfaces, especially under the influence of external electric fields, is poorly understood. Using a combination of molecular dynamics simulation and surface-enhanced Raman spectroscopy, we study the external electric field-induced conformational change of dodecapeptide probes tethered to a nanostructured metallic surface. Surface-tethered peptides with and without phosphorylated tyrosine residues are compared to show that peptide conformational change under electric field is sensitive to biochemical modification. Our study proposes a highly sensitive in vitro nanoscale electro-optical detection and manipulation method for biomolecule conformation and charge at bio-nano interfaces.


Asunto(s)
Nanopartículas del Metal/química , Nanopartículas del Metal/efectos de la radiación , Modelos Químicos , Modelos Moleculares , Péptidos/química , Simulación por Computador , Campos Electromagnéticos , Nanopartículas del Metal/ultraestructura , Conformación Proteica/efectos de la radiación , Propiedades de Superficie/efectos de la radiación
7.
ACS Nano ; 5(10): 8002-12, 2011 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-21936527

RESUMEN

One-dimensional nanostructures, such as nanowhisker, nanorod, nanowire, nanopillar, nanocone, nanotip, nanoneedle, have attracted significant attentions in the past decades owing to their numerous applications in electronics, photonics, energy conversion and storage, and interfacing with biomolecules and living cells. The manufacturing of nanostructured devices relies on either bottom-up approaches such as synthesis or growth process or top-down approaches such as lithography or etching process. Here we report a unique, synchronized, and simultaneous top-down and bottom-up nanofabrication approach called simultaneous plasma enhanced reactive ion synthesis and etching (SPERISE). For the first time the atomic addition and subtraction of nanomaterials are concurrently observed and precisely controlled in a single-step process permitting ultrahigh-throughput, lithography-less, wafer-scale, and room-temperature nanomanufacturing. Rapid low-cost manufacturing of high-density, high-uniformity, light-trapping nanocone arrays was demonstrated on single crystalline and polycrystalline silicon wafers, as well as amorphous silicon thin films. The proposed nanofabrication mechanisms also provide a general guideline to designing new SPERISE methods for other solid-state materials besides silicon.


Asunto(s)
Nanoestructuras , Nanotecnología/métodos , Silicio/química , Cristalización , Suministros de Energía Eléctrica , Industrias , Luz , Reproducibilidad de los Resultados , Energía Solar , Factores de Tiempo
8.
Nanotechnology ; 21(39): 395701, 2010 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-20808033

RESUMEN

Surface enhanced Raman spectroscopy (SERS) has been increasingly utilized as an analytical technique with significant chemical and biological applications (Qian et al 2008 Nat. Biotechnol. 26 83; Fujita et al 2009 J. Biomed. Opt. 14 024038; Chou et al 2008 Nano Lett.8 1729; Culha et al 2003 Anal. Chem. 75 6196; Willets K A 2009 Anal. Bioanal. Chem. 394 85; Han et al 2009 Anal. Bioanal. Chem. 394 1719; Sha et al 2008 J. Am. Chem. Soc. 130 17214). However, production of a robust, homogeneous and large-area SERS substrate with the same ultrahigh sensitivity and reproducibility still remains an important issue. Here, we describe a large-area ultrahigh-uniformity tapered silver nanopillar array made by laser interference lithography on the entire surface of a 6 inch wafer. Also presented is the rigorous optical characterization method of the tapered nanopillar substrate to accurately quantify the Raman enhancement factor, uniformity and repeatability. An average homogeneous enhancement factor of close to 10(8) was obtained for benzenethiol adsorbed on a silver-coated nanopillar substrate.


Asunto(s)
Nanoestructuras/química , Dióxido de Silicio/química , Plata/química , Espectrometría Raman/métodos , Nanoestructuras/ultraestructura , Fenoles , Reproducibilidad de los Resultados , Compuestos de Sulfhidrilo , Propiedades de Superficie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...