Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Commun Biol ; 6(1): 256, 2023 03 24.
Artículo en Inglés | MEDLINE | ID: mdl-36964318

RESUMEN

Direct lineage reprogramming of one somatic cell into another without transitioning through a progenitor stage has emerged as a strategy to generate clinically relevant cell types. One cell type of interest is the pancreatic insulin-producing ß cell whose loss and/or dysfunction leads to diabetes. To date it has been possible to create ß-like cells from related endodermal cell types by forcing the expression of developmental transcription factors, but not from more distant cell lineages like fibroblasts. In light of the therapeutic benefits of choosing an accessible cell type as the cell of origin, in this study we set out to analyze the feasibility of transforming human skin fibroblasts into ß-like cells. We describe how the timed-introduction of five developmental transcription factors (Neurog3, Pdx1, MafA, Pax4, and Nkx2-2) promotes conversion of fibroblasts toward a ß-cell fate. Reprogrammed cells exhibit ß-cell features including ß-cell gene expression and glucose-responsive intracellular calcium mobilization. Moreover, reprogrammed cells display glucose-induced insulin secretion in vitro and in vivo. This work provides proof-of-concept of the capacity to make insulin-producing cells from human fibroblasts via transcription factor-mediated direct reprogramming.


Asunto(s)
Insulina , Factores de Transcripción , Humanos , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Insulina/metabolismo , Regulación de la Expresión Génica , Diferenciación Celular/fisiología , Fibroblastos/metabolismo
2.
Methods Mol Biol ; 2582: 191-208, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36370351

RESUMEN

Expanding the number of insulin-producing beta cells through reactivation of their replication has been proposed as a therapy to prevent or delay the appearance of diabetes. Using antibody arrays, we identified CCN4/Wisp1 as a circulating factor enriched in preweaning mice, a period in which beta cells exhibit a dramatic increase in number. This finding led us to investigate the involvement of CCN4 in beta cell proliferation. We demonstrated that CCN4 promotes adult beta cell proliferation in vitro in cultured isolated islets, and in vivo in islets transplanted into the anterior chamber of the eye. In this chapter, we present the methodology that was used to study proliferation in both settings.


Asunto(s)
Diabetes Mellitus , Células Secretoras de Insulina , Trasplante de Islotes Pancreáticos , Islotes Pancreáticos , Ratones , Animales , Células Secretoras de Insulina/fisiología , Proliferación Celular
4.
Adv Mater Technol ; 7(7): 2101696, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37182094

RESUMEN

Type 1 Diabetes results from autoimmune response elicited against ß-cell antigens. Nowadays, insulin injections remain the leading therapeutic option. However, injection treatment fails to emulate the highly dynamic insulin release that ß-cells provide. 3D cell-laden microspheres have been proposed during the last years as a major platform for bioengineering insulin-secreting constructs for tissue graft implantation and a model for in vitro drug screening platforms. Current microsphere fabrication technologies have several drawbacks: the need for an oil phase containing surfactants, diameter inconsistency of the microspheres, and high time-consuming processes. These technologies have widely used alginate for its rapid gelation, high processability, and low cost. However, its low biocompatible properties do not provide effective cell attachment. This study proposes a high-throughput methodology using a 3D bioprinter that employs an ECM-like microenvironment for effective cell-laden microsphere production to overcome these limitations. Crosslinking the resulting microspheres with tannic acid prevents collagenase degradation and enhances spherical structural consistency while allowing the diffusion of nutrients and oxygen. The approach allows customization of microsphere diameter with extremely low variability. In conclusion, a novel bio-printing procedure is developed to fabricate large amounts of reproducible microspheres capable of secreting insulin in response to extracellular glucose stimuli.

5.
Int J Mol Sci ; 22(17)2021 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-34502262

RESUMEN

Intestinal microfold cells (M cells) are a dynamic lineage of epithelial cells that initiate mucosal immunity in the intestine. They are responsible for the uptake and transcytosis of microorganisms, pathogens, and other antigens in the gastrointestinal tract. A mature M cell expresses a receptor Gp2 which binds to pathogens and aids in the uptake. Due to the rarity of these cells in the intestine, their development and differentiation remain yet to be fully understood. We recently demonstrated that polycomb repressive complex 2 (PRC2) is an epigenetic regulator of M cell development, and 12 novel transcription factors including Atoh8 were revealed to be regulated by the PRC2. Here, we show that Atoh8 acts as a regulator of M cell differentiation; the absence of Atoh8 led to a significant increase in the number of Gp2+ mature M cells and other M cell-associated markers such as Spi-B and Sox8. In vitro organoid analysis of RankL treated organoid showed an increase of mature marker GP2 expression and other M cell-associated markers. Atoh8 null mice showed an increase in transcytosis capacity of luminal antigens. An increase in M cell population has been previously reported to be detrimental to mucosal immunity because some pathogens like orally acquired prions have been able to exploit the transcytosis capacity of M cells to infect the host; mice with an increased population of M cells are also susceptible to Salmonella infections. Our study here demonstrates that PRC2 regulated Atoh8 is one of the factors that regulate the population density of intestinal M cell in the Peyer's patch.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Diferenciación Celular/genética , Células Epiteliales/metabolismo , Mucosa Intestinal/metabolismo , Complejo Represivo Polycomb 2/genética , Complejo Represivo Polycomb 2/metabolismo , Animales , Linfocitos B/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/deficiencia , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Diferenciación Celular/inmunología , Células Epiteliales/efectos de los fármacos , Células Epiteliales/inmunología , Inmunidad Mucosa/genética , Mucosa Intestinal/efectos de los fármacos , Mucosa Intestinal/inmunología , Ratones , Ratones Noqueados , Ganglios Linfáticos Agregados/efectos de los fármacos , Ganglios Linfáticos Agregados/metabolismo , Cultivo Primario de Células , Ligando RANK/farmacología , Receptor Activador del Factor Nuclear kappa-B/farmacología , Linfocitos T/metabolismo , Transcitosis/genética
6.
Mol Metab ; 53: 101264, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34091063

RESUMEN

OBJECTIVE: Early postnatal life is a critical period for the establishment of the functional ß-cell mass that will sustain whole-body glucose homeostasis during the lifetime. ß cells are formed from progenitors during embryonic development but undergo significant expansion in quantity and attain functional maturity after birth. The signals and pathways involved in these processes are not fully elucidated. Cyclic adenosine monophosphate (cAMP) is an intracellular signaling molecule that is known to regulate insulin secretion, gene expression, proliferation, and survival of adult ß cells. The heterotrimeric G protein Gs stimulates the cAMP-dependent pathway by activating adenylyl cyclase. In this study, we sought to explore the role of Gs-dependent signaling in postnatal ß-cell development. METHODS: To study Gs-dependent signaling, we generated conditional knockout mice in which the α subunit of the Gs protein (Gsα) was ablated from ß-cells using the Cre deleter line Ins1Cre. Mice were characterized in terms of glucose homeostasis, including in vivo glucose tolerance, glucose-induced insulin secretion, and insulin sensitivity. ß-cell mass was studied using histomorphometric analysis and optical projection tomography. ß-cell proliferation was studied by ki67 and phospho-histone H3 immunostatining, and apoptosis was assessed by TUNEL assay. Gene expression was determined in isolated islets and sorted ß cells by qPCR. Intracellular cAMP was studied in isolated islets using HTRF-based technology. The activation status of the cAMP and insulin-signaling pathways was determined by immunoblot analysis of the relevant components of these pathways in isolated islets. In vitro proliferation of dissociated islet cells was assessed by BrdU incorporation. RESULTS: Elimination of Gsα in ß cells led to reduced ß-cell mass, deficient insulin secretion, and severe glucose intolerance. These defects were evident by weaning and were associated with decreased proliferation and inadequate expression of key ß-cell identity and maturation genes in postnatal ß-cells. Additionally, loss of Gsα caused a broad multilevel disruption of the insulin transduction pathway that resulted in the specific abrogation of the islet proliferative response to insulin. CONCLUSION: We conclude that Gsα is required for ß-cell growth and maturation in the early postnatal stage and propose that this is partly mediated via its crosstalk with insulin signaling. Our findings disclose a tight connection between these two pathways in postnatal ß cells, which may have implications for using cAMP-raising agents to promote ß-cell regeneration and maturation in diabetes.


Asunto(s)
Subunidades alfa de la Proteína de Unión al GTP Gs/metabolismo , Células Secretoras de Insulina/metabolismo , Animales , Subunidades alfa de la Proteína de Unión al GTP Gs/deficiencia , Ratones Noqueados , Ratones Transgénicos , Transducción de Señal
7.
Nat Commun ; 11(1): 5982, 2020 11 25.
Artículo en Inglés | MEDLINE | ID: mdl-33239617

RESUMEN

Expanding the mass of pancreatic insulin-producing beta cells through re-activation of beta cell replication has been proposed as a therapy to prevent or delay the appearance of diabetes. Pancreatic beta cells exhibit an age-dependent decrease in their proliferative activity, partly related to changes in the systemic environment. Here we report the identification of CCN4/Wisp1 as a circulating factor more abundant in pre-weaning than in adult mice. We show that Wisp1 promotes endogenous and transplanted adult beta cell proliferation in vivo. We validate these findings using isolated mouse and human islets and find that the beta cell trophic effect of Wisp1 is dependent on Akt signaling. In summary, our study reveals the role of Wisp1 as an inducer of beta cell replication, supporting the idea that the use of young blood factors may be a useful strategy to expand adult beta cell mass.


Asunto(s)
Envejecimiento/fisiología , Proteínas CCN de Señalización Intercelular/metabolismo , Células Secretoras de Insulina/fisiología , Trasplante de Islotes Pancreáticos/métodos , Proteínas Proto-Oncogénicas/metabolismo , Envejecimiento/sangre , Animales , Proteínas CCN de Señalización Intercelular/sangre , Proteínas CCN de Señalización Intercelular/genética , Proliferación Celular , Células Cultivadas , Medios de Cultivo/metabolismo , Diabetes Mellitus/terapia , Femenino , Humanos , Células Secretoras de Insulina/trasplante , Masculino , Ratones , Ratones Noqueados , Cultivo Primario de Células/métodos , Proteínas Proto-Oncogénicas/sangre , Proteínas Proto-Oncogénicas/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Transducción de Señal/fisiología , Destete
8.
Sci Transl Med ; 11(497)2019 06 19.
Artículo en Inglés | MEDLINE | ID: mdl-31217339

RESUMEN

Deficient vascularization is a major driver of early islet graft loss and one of the primary reasons for the failure of islet transplantation as a viable treatment for type 1 diabetes. This study identifies the protein tyrosine phosphatase 1B (PTP1B) as a potential modulator of islet graft revascularization. We demonstrate that grafts of pancreatic islets lacking PTP1B exhibit increased revascularization, which is accompanied by improved graft survival and function, and recovery of normoglycemia and glucose tolerance in diabetic mice transplanted with PTP1B-deficient islets. Mechanistically, we show that the absence of PTP1B leads to activation of hypoxia-inducible factor 1α-independent peroxisome proliferator-activated receptor γ coactivator 1α/estrogen-related receptor α signaling and enhanced expression and production of vascular endothelial growth factor A (VEGF-A) by ß cells. These observations were reproduced in human islets. Together, these findings reveal that PTP1B regulates islet VEGF-A production and suggest that this phosphatase could be targeted to improve islet transplantation outcomes.


Asunto(s)
Islotes Pancreáticos/metabolismo , Páncreas/metabolismo , Proteína Tirosina Fosfatasa no Receptora Tipo 1/metabolismo , Anciano , Animales , Caspasa 9/metabolismo , Femenino , Prueba de Tolerancia a la Glucosa , Humanos , Immunoblotting , Insulina/metabolismo , Masculino , Ratones , Ratones Endogámicos BALB C , Persona de Mediana Edad , Proteína Tirosina Fosfatasa no Receptora Tipo 1/genética , Interferencia de ARN , Factor A de Crecimiento Endotelial Vascular/genética , Factor A de Crecimiento Endotelial Vascular/metabolismo
9.
Biochim Biophys Acta Gene Regul Mech ; 1861(5): 473-480, 2018 May.
Artículo en Inglés | MEDLINE | ID: mdl-29530603

RESUMEN

Posttranscriptional modifications of histones constitute an epigenetic mechanism that is closely linked to both gene silencing and activation events. Trimethylation of Histone3 at lysine 27 (H3K27me3) is a repressive mark that associates with developmental gene regulation during differentiation programs. In the developing pancreas, expression of the transcription factor Neurogenin3 in multipotent progenitors initiates endocrine differentiation that culminates in the generation of all pancreatic islet cell lineages, including insulin-producing beta cells. Previously, we showed that Neurogenin3 promoted the removal of H3K27me3 marks at target gene promoters in vitro, suggesting a functional connection between this factor and regulators of this chromatin mark. In the present study, we aimed to specifically evaluate whether targeting the activity of these histone modifiers can be used to modulate pancreatic endocrine differentiation. Our data show that chemical inhibition of the H3K27me3 demethylases Jmjd3/Utx blunts Neurogenin3-dependent gene activation in vitro. Conversely, inhibition of the H3K27me3 methyltransferase Ezh2 enhances both the transactivation ability of Neurogenin3 in cultured cells and the formation of insulin-producing cells during directed differentiation from pluripotent cells. These results can help improve current protocols aimed at generating insulin-producing cells for beta cell replacement therapy in diabetes.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Diferenciación Celular/genética , Diabetes Mellitus/genética , Proteína Potenciadora del Homólogo Zeste 2/genética , Histona Demetilasas con Dominio de Jumonji/genética , Proteínas del Tejido Nervioso/genética , Animales , Cromatina/genética , Diabetes Mellitus/terapia , Epigénesis Genética , Regulación del Desarrollo de la Expresión Génica , Silenciador del Gen , Humanos , Insulina/genética , Insulina/metabolismo , Secreción de Insulina , Células Secretoras de Insulina/metabolismo , Células Secretoras de Insulina/patología , Lisina/genética , Organogénesis/genética
10.
Diabetes ; 66(12): 3029-3040, 2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-28970284

RESUMEN

The pancreatic ß-cell transcriptome is highly sensitive to external signals such as glucose oscillations and stress cues. MicroRNAs (miRNAs) have emerged as key factors in gene expression regulation. Here, we aimed to identify miRNAs that are modulated by glucose in mouse pancreatic islets. We identified miR-708 as the most upregulated miRNA in islets cultured at low glucose concentrations, a setting that triggers a strong stress response. miR-708 was also potently upregulated by triggering endoplasmic reticulum (ER) stress with thapsigargin and in islets of ob/ob mice. Low-glucose induction of miR-708 was blocked by treatment with the chemical chaperone 4-phenylbutyrate, uncovering the involvement of ER stress in this response. An integrative analysis identified neuronatin (Nnat) as a potential glucose-regulated target of miR-708. Indeed, Nnat expression was inversely correlated with miR-708 in islets cultured at different glucose concentrations and in ob/ob mouse islets and was reduced after miR-708 overexpression. Consistent with the role of Nnat in the secretory function of ß-cells, miR-708 overexpression impaired glucose-stimulated insulin secretion (GSIS), which was recovered by NNAT overexpression. Moreover, miR-708 inhibition recovered GSIS in islets cultured at low glucose. Finally, miR-708 overexpression suppressed ß-cell proliferation and induced ß-cell apoptosis. Collectively, our results provide a novel mechanism of glucose regulation of ß-cell function and growth by repressing stress-induced miR-708.


Asunto(s)
Estrés del Retículo Endoplásmico , Células Secretoras de Insulina/fisiología , MicroARNs/fisiología , Animales , Apoptosis , Células Cultivadas , Células Secretoras de Insulina/metabolismo , Masculino , Proteínas de la Membrana/análisis , Proteínas de la Membrana/genética , Ratones , Ratones Endogámicos C57BL , Ratones Obesos , MicroARNs/análisis , Proteínas del Tejido Nervioso/análisis , Factor de Transcripción CHOP/genética
11.
Sci Rep ; 7(1): 11643, 2017 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-28912479

RESUMEN

Jarid2 is a component of the Polycomb Repressor complex 2 (PRC2), which is responsible for genome-wide H3K27me3 deposition, in embryonic stem cells. However, Jarid2 has also been shown to exert pleiotropic PRC2-independent actions during embryogenesis. Here, we have investigated the role of Jarid2 during pancreas development. Conditional ablation of Jarid2 in pancreatic progenitors results in reduced endocrine cell area at birth due to impaired endocrine cell differentiation and reduced prenatal proliferation. Inactivation of Jarid2 in endocrine progenitors demonstrates that Jarid2 functions after endocrine specification. Furthermore, genome-wide expression analysis reveals that Jarid2 is required for the complete activation of the insulin-producing ß-cell differentiation program. Jarid2-deficient pancreases exhibit impaired deposition of RNAPII-Ser5P, the initiating form of RNAPII, but no changes in H3K27me3, at the promoters of affected endocrine genes. Thus, our study identifies Jarid2 as a fine-tuner of gene expression during late stages of pancreatic endocrine cell development. These findings are relevant for generation of transplantable stem cell-derived ß-cells.


Asunto(s)
Diferenciación Celular/genética , Células Secretoras de Insulina/citología , Células Secretoras de Insulina/metabolismo , Complejo Represivo Polycomb 2/genética , Células Madre/citología , Células Madre/metabolismo , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Proliferación Celular , Células Endocrinas/citología , Células Endocrinas/metabolismo , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Histonas/metabolismo , Ratones , Ratones Transgénicos , Proteínas del Tejido Nervioso/genética , ARN Polimerasa II/metabolismo , Transcripción Genética , Transcriptoma
12.
Cell Metab ; 25(6): 1390-1399.e6, 2017 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-28591639

RESUMEN

Proopiomelanocortin (POMC) neurons are critical sensors of nutrient availability implicated in energy balance and glucose metabolism control. However, the precise mechanisms underlying nutrient sensing in POMC neurons remain incompletely understood. We show that mitochondrial dynamics mediated by Mitofusin 1 (MFN1) in POMC neurons couple nutrient sensing with systemic glucose metabolism. Mice lacking MFN1 in POMC neurons exhibited defective mitochondrial architecture remodeling and attenuated hypothalamic gene expression programs during the fast-to-fed transition. This loss of mitochondrial flexibility in POMC neurons bidirectionally altered glucose sensing, causing abnormal glucose homeostasis due to defective insulin secretion by pancreatic ß cells. Fed mice lacking MFN1 in POMC neurons displayed enhanced hypothalamic mitochondrial oxygen flux and reactive oxygen species generation. Central delivery of antioxidants was able to normalize the phenotype. Collectively, our data posit MFN1-mediated mitochondrial dynamics in POMC neurons as an intrinsic nutrient-sensing mechanism and unveil an unrecognized link between this subset of neurons and insulin release.


Asunto(s)
GTP Fosfohidrolasas/metabolismo , Glucosa/metabolismo , Células Secretoras de Insulina/trasplante , Insulina/metabolismo , Mitocondrias/metabolismo , Dinámicas Mitocondriales , Neuronas/metabolismo , Proopiomelanocortina , Animales , GTP Fosfohidrolasas/genética , Glucosa/genética , Insulina/genética , Secreción de Insulina , Ratones , Ratones Noqueados , Mitocondrias/genética
13.
Neurobiol Aging ; 46: 169-79, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27498054

RESUMEN

Presenilin 1 (PSEN1) mutations are the main cause of monogenic Alzheimer's disease. We studied the functional effects of the mutation K239N, which shows incomplete penetrance at the age of 65 years and compared it with the more aggressive mutation E120G. We engineered stable cell lines expressing human PSEN1 wild type or with K239N or E120G mutations. Both mutations induced dysfunction of γ-secretase in the processing of amyloid-ß protein precursor, leading to an increase in the amyloid ß42/amyloid ß40 ratio. Analysis of homeostatic mechanisms showed that K239N induced lower basal and hydrogen peroxide induced intracellular levels of reactive oxygen species than E120G. Similarly, K239N induced lower vulnerability to apoptosis by hydrogen peroxide injury than E120G. Accordingly, the proapoptotic signaling pathways c-Jun NH2-terminal kinase and p38 mitogen-activated protein kinase maintained PSEN1-mediated negative regulation in K239N but not in E120G-bearing cells. Furthermore, the activation of the prosurvival signaling pathways mitogen-activated protein kinase/extracellular signal-regulated kinase and phosphoinositide 3-kinase/Akt was lower in E120G-bearing cells. Therefore, preservation of mechanisms regulating cell responses independent of amyloid-ß protein precursor processing may account for the milder phenotype induced by the PSEN1 K239N mutation.


Asunto(s)
Supervivencia Celular/genética , Mutación/genética , Fenotipo , Presenilina-1/genética , Presenilina-1/fisiología , Anciano , Enfermedad de Alzheimer/genética , Secretasas de la Proteína Precursora del Amiloide , Péptidos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Apoptosis , Línea Celular , Humanos , Peróxido de Hidrógeno , Proteínas Quinasas JNK Activadas por Mitógenos/fisiología , Fragmentos de Péptidos/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Especies Reactivas de Oxígeno , Transducción de Señal , Proteínas Quinasas p38 Activadas por Mitógenos/fisiología
14.
PLoS One ; 11(1): e0146273, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26752640

RESUMEN

Atonal Homolog 8 (Atoh8) is a basic helix-loop-helix (bHLH) transcription factor that is highly conserved across species and expressed in multiple tissues during embryogenesis. In the developing pancreas, Atoh8 is expressed in endocrine progenitors but declines in hormone-positive cells, suggesting a role during early stages of the endocrine differentiation program. We previously generated a whole-body Atoh8 knockout but early lethality of null embryos precluded assessment of Atoh8 functions during organ development. Here we report the generation of a conditional Atoh8 knockout mouse strain by insertion of two loxP sites flanking exon 1 of the Atoh8 gene. Pancreas-specific Atoh8 knockout (Atoh8 Δpanc) mice were obtained by mating this strain with a Pdx1-Cre transgenic line. Atoh8 Δpanc mice were born at the expected mendelian ratio and showed normal appearance and fertility. Pancreas weight and gross pancreatic morphology were normal. All pancreatic cell lineages were present, although endocrine δ (somatostatin) cells were modestly augmented in Atoh8 Δpanc as compared to control neonates. This increase did not affect whole-body glucose tolerance in adult knockout animals. Gene expression analysis in embryonic pancreases at the time of the major endocrine differentiation wave revealed modest alterations in several early endocrine differentiation markers. Together, these data argue that Atoh8 modulates activation of the endocrine program but it is not essential for pancreas formation or endocrine differentiation in the mouse. Given the ubiquitous expression pattern of Atoh8, the availability of a mouse strain carrying a conditional allele for this gene warrants further studies using temporally regulated Cre transgenic lines to elucidate time or cell-autonomous functions of Atoh8 during development and in the adult.


Asunto(s)
Alelos , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Animales , Animales Recién Nacidos , Biomarcadores/metabolismo , Regulación de la Expresión Génica , Prueba de Tolerancia a la Glucosa , Insulina/metabolismo , Secreción de Insulina , Islotes Pancreáticos/patología , Ratones Endogámicos C57BL , Ratones Noqueados , Fenotipo
15.
Diabetologia ; 59(5): 1012-20, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-26825527

RESUMEN

AIMS/HYPOTHESIS: Glycogen accumulation occurs in beta cells of diabetic patients and has been proposed to partly mediate glucotoxicity-induced beta cell dysfunction. However, the role of glycogen metabolism in beta cell function and its contribution to diabetes pathophysiology remain poorly understood. We investigated the function of beta cell glycogen by studying glucose homeostasis in mice with (1) defective glycogen synthesis in the pancreas; and (2) excessive glycogen accumulation in beta cells. METHODS: Conditional deletion of the Gys1 gene and overexpression of protein targeting to glycogen (PTG) was accomplished by Cre-lox recombination using pancreas-specific Cre lines. Glucose homeostasis was assessed by determining fasting glycaemia, insulinaemia and glucose tolerance. Beta cell mass was determined by morphometry. Glycogen was detected histologically by periodic acid-Schiff's reagent staining. Isolated islets were used for the determination of glycogen and insulin content, insulin secretion, immunoblots and gene expression assays. RESULTS: Gys1 knockout (Gys1 (KO)) mice did not exhibit differences in glucose tolerance or basal glycaemia and insulinaemia relative to controls. Insulin secretion and gene expression in isolated islets was also indistinguishable between Gys1 (KO) and controls. Conversely, despite effective glycogen overaccumulation in islets, mice with PTG overexpression (PTG(OE)) presented similar glucose tolerance to controls. However, under fasting conditions they exhibited lower glycaemia and higher insulinaemia. Importantly, neither young nor aged PTG(OE) mice showed differences in beta cell mass relative to age-matched controls. Finally, a high-fat diet did not reveal a beta cell-autonomous phenotype in either model. CONCLUSIONS/INTERPRETATION: Glycogen metabolism is not required for the maintenance of beta cell function. Glycogen accumulation in beta cells alone is not sufficient to trigger the dysfunction or loss of these cells, or progression to diabetes.


Asunto(s)
Glucosa/metabolismo , Glucógeno/metabolismo , Células Secretoras de Insulina/metabolismo , Animales , Femenino , Glucógeno/fisiología , Glucógeno Sintasa/genética , Glucógeno Sintasa/metabolismo , Homeostasis , Insulina/genética , Insulina/metabolismo , Células Secretoras de Insulina/fisiología , Masculino , Ratones , Ratones Noqueados
16.
Can J Physiol Pharmacol ; 92(8): 613-20, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24977713

RESUMEN

Insulin receptor substrate 2 (IRS2) is a widely expressed protein that regulates crucial biological processes including glucose metabolism, protein synthesis, and cell survival. IRS2 is part of the insulin - insulin-like growth factor (IGF) signaling pathway and mediates the activation of the phosphotidylinositol 3-kinase (PI3K)-Akt and the Ras-mitogen-activated protein kinase (MAPK) cascades in insulin target tissues and in the pancreas. The best evidence of this is that systemic elimination of the Irs2 in mice (Irs2(-/-)) recapitulates the pathogenesis of type 2 diabetes (T2D), in that diabetes arises as a consequence of combined insulin resistance and beta-cell failure. Indeed, work using this knockout mouse has confirmed the importance of IRS2 in the control of glucose homeostasis and especially in the survival and function of pancreatic beta-cells. These studies have shown that IRS2 is critically required for beta-cell compensation in conditions of increased insulin demand. Importantly, islets isolated from T2D patients exhibit reduced IRS2 expression, which supports the likely contribution of altered IRS2-dependent signaling to beta-cell failure in human T2D. For all these reasons, the Irs2(-/-) mouse has been and will be essential for elucidating the inter-relationship between beta-cell function and insulin resistance, as well as to delineate therapeutic strategies to protect beta-cells during T2D progression.


Asunto(s)
Diabetes Mellitus Tipo 2/metabolismo , Proteínas Sustrato del Receptor de Insulina/genética , Proteínas Sustrato del Receptor de Insulina/metabolismo , Páncreas/metabolismo , Animales , Diabetes Mellitus Tipo 2/patología , Diabetes Mellitus Tipo 2/prevención & control , Modelos Animales de Enfermedad , Humanos , Resistencia a la Insulina , Ratones , Ratones Noqueados , Especificidad de Órganos/genética , Transducción de Señal
17.
Diabetologia ; 57(6): 1219-31, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24633677

RESUMEN

AIMS/HYPOTHESIS: Comprehensive characterisation of the interrelation between the peripancreatic adipose tissue and the pancreatic islets promises novel insights into the mechanisms that regulate beta cell adaptation to obesity. Here, we sought to determine the main pathways and key molecules mediating the crosstalk between these two tissues during adaptation to obesity by the way of an integrated inter-tissue, multi-platform analysis. METHODS: Wistar rats were fed a standard or cafeteria diet for 30 days. Transcriptomic variations by diet in islets and peripancreatic adipose tissue were examined through microarray analysis. The secretome from peripancreatic adipose tissue was subjected to a non-targeted metabolomic and proteomic analysis. Gene expression variations in islets were integrated with changes in peripancreatic adipose tissue gene expression and protein and metabolite secretion using an integrated inter-tissue pathway and network analysis. RESULTS: The highest level of data integration, linking genes differentially expressed in both tissues with secretome variations, allowed the identification of significantly enriched canonical pathways, such as the activation of liver/retinoid X receptors, triacylglycerol degradation, and regulation of inflammatory and immune responses, and underscored interaction network hubs, such as cholesterol and the fatty acid binding protein 4, which were unpredicted through single-tissue analysis and have not been previously implicated in the peripancreatic adipose tissue crosstalk with beta cells. CONCLUSIONS/INTERPRETATION: The integrated analysis reported here allowed the identification of novel mechanisms and key molecules involved in peripancreatic adipose tissue interrelation with beta cells during the development of obesity; this might help the development of novel strategies to prevent type 2 diabetes.


Asunto(s)
Tejido Adiposo/metabolismo , Islotes Pancreáticos/metabolismo , Obesidad/metabolismo , Animales , Masculino , Proteómica , Ratas , Ratas Wistar , Triglicéridos/metabolismo
18.
Am J Physiol Endocrinol Metab ; 306(1): E36-47, 2014 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-24253047

RESUMEN

Pancreatic ß-cells play a central role in type 2 diabetes (T2D) development, which is characterized by the progressive decline of the functional ß-cell mass that is associated mainly with increased ß-cell apoptosis. Thus, understanding how to enhance survival of ß-cells is key for the management of T2D. The insulin receptor substrate-2 (IRS-2) protein is pivotal in mediating the insulin/IGF signaling pathway in ß-cells. In fact, IRS-2 is critically required for ß-cell compensation in conditions of increased insulin demand and for ß-cell survival. Tungstate is a powerful antidiabetic agent that has been shown to promote ß-cell recovery in toxin-induced diabetic rodent models. In this study, we investigated whether tungstate could prevent the onset of diabetes in a scenario of dysregulated insulin/IGF signaling and massive ß-cell death. To this end, we treated mice deficient in IRS2 (Irs2(-/-)), which exhibit severe ß-cell loss, with tungstate for 3 wk. Tungstate normalized glucose tolerance in Irs2(-/-) mice in correlation with increased ß-cell mass, increased ß-cell replication, and a striking threefold reduction in ß-cell apoptosis. Islets from treated Irs2(-/-) exhibited increased phosphorylated Erk1/2. Interestingly, tungstate repressed apoptosis-related genes in Irs2(-/-) islets in vitro, and ERK1/2 blockade abolished some of these effects. Gene expression profiling showed evidence of a broad impact of tungstate on cell death pathways in islets from Irs2(-/-) mice, consistent with reduced apoptotic rates. Our results support the finding that ß-cell death can be arrested in the absence of IRS2 and that therapies aimed at reversing ß-cell mass decline are potential strategies to prevent the progression to T2D.


Asunto(s)
Hipoglucemiantes/administración & dosificación , Proteínas Sustrato del Receptor de Insulina/deficiencia , Proteínas Sustrato del Receptor de Insulina/fisiología , Células Secretoras de Insulina/efectos de los fármacos , Compuestos de Tungsteno/administración & dosificación , Animales , Apoptosis/efectos de los fármacos , Apoptosis/genética , Supervivencia Celular/efectos de los fármacos , Diabetes Mellitus Tipo 2/prevención & control , Regulación hacia Abajo/efectos de los fármacos , Intolerancia a la Glucosa/tratamiento farmacológico , Células Secretoras de Insulina/fisiología , Hígado/metabolismo , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Sistema de Señalización de MAP Quinasas/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Fosforilación/efectos de los fármacos , Transducción de Señal
19.
Biochim Biophys Acta ; 1829(11): 1175-83, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23938248

RESUMEN

The atonal-related Neurogenin/NeuroD family of basic helix-loop-helix (bHLH) transcription factors comprises potent inducers of neuronal and endocrine differentiation programs in the nervous and digestive system. Atonal homolog 8 (Atoh8) displays high similarity in the bHLH domain with NeuroD proteins. Yet, available evidences indicate that Atoh8 has distinctive features including a ubiquitous expression pattern in embryonic tissues and the ability to inhibit differentiation. To gain insights into Atoh8 function, we aimed at identifying Atoh8 targets and investigated the effects of Atoh8 on global gene expression patterns in pancreatic mPAC cells, a model of bHLH-dependent endocrine differentiation. Our data reveal that Atoh8 is a weak transcriptional activator and does not exhibit proendocrine activity. Conversely, it blocks the induction of a reduced group of gene targets of the atonal-related proendocrine factor Neurogenin3. We show that Atoh8 lacks a transactivation domain and possesses intrinsic repressor activity that depends on a conserved Proline-rich domain. Atoh8 binds the ubiquitous E protein E47 and its ability to repress transcription may partly result from its ability to inhibit E47/E47 and Neurogenin3/E47 dimer activities. These results reveal distinctive transcriptional properties of Atoh8 within the atonal-related bHLH family that may be associated with the acquisition of new biological functions.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/fisiología , Transcripción Genética/fisiología , Animales , Línea Celular , Perfilación de la Expresión Génica , Ratones , Regiones Promotoras Genéticas , Reacción en Cadena en Tiempo Real de la Polimerasa
20.
J Biol Chem ; 288(34): 24429-40, 2013 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-23836893

RESUMEN

GATA and Friend of GATA (FOG) form a transcriptional complex that plays a key role in cardiovascular development in both fish and mammals. In the present study we demonstrate that the basic helix-loop-helix transcription factor Atonal homolog 8 (Atoh8) is required for development of the heart in fish but not in mice. Genetic studies reveal that Atoh8 interacts specifically with Gata4 and Fog1 during development of the heart and swim bladder in the fish. Biochemical studies reveal that ATOH8, GATA4, and FOG2 associate in a single complex in vitro. In contrast to fish, ATOH8-deficient mice exhibit normal cardiac development and loss of ATOH8 does not alter cardiac development in Gata4(+/-) mice. This species difference in the role of ATOH8 is explained in part by LacZ and GFP reporter alleles that reveal restriction of Atoh8 expression to atrial but not ventricular myocardium in the mouse. Our findings identify ATOH8 as a novel regulator of GATA-FOG function that is required for cardiac development in the fish but not the mouse. Whether ATOH8 modulates GATA-FOG function at other sites or in more subtle ways in mammals is not yet known.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Proteínas de Unión al ADN/metabolismo , Factores de Transcripción GATA/metabolismo , Factor de Transcripción GATA4/metabolismo , Organogénesis/fisiología , Factores de Transcripción/metabolismo , Proteínas de Pez Cebra/metabolismo , Pez Cebra/embriología , Sacos Aéreos/embriología , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Proteínas de Unión al ADN/genética , Factores de Transcripción GATA/genética , Factor de Transcripción GATA4/genética , Atrios Cardíacos/embriología , Ventrículos Cardíacos/embriología , Ratones , Ratones Transgénicos , Complejos Multiproteicos/genética , Complejos Multiproteicos/metabolismo , Miocardio/metabolismo , Especificidad de Órganos/fisiología , Factores de Transcripción/genética , Pez Cebra/genética , Proteínas de Pez Cebra/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...