Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 83
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-38657021

RESUMEN

In the context of evaluating the impact of environmentally friendly and sustainably produced alternative protein sources in fish feed, the present study's aim was to examine the overall physiological stress response in one of the main fish species of European freshwater aquaculture, Oncorhynchus mykiss (rainbow trout), following the partial substitution of fish meal (FM) with a Tenebrio molitor (TM) (yellow mealworm) full-fat meal. In total, 222 rainbow trout individuals (115.2 ± 14.2 g) were allocated randomly into six tanks, three per dietary treatment, and were fed a formulated diet containing 60% yellow mealworm (TM60) compared to a control diet without insect meal (TM0). Both diets contained equal amounts of crude protein, dry matter and, lipid content, while the FM in TM60 was 100 g kg-1 corresponding to the one seventh of the TM0. Heat shock response (HSR), MAPK signalling, cell death pathways (apoptosis and autophagy), antioxidant defence mechanisms, and intermediate metabolism were evaluated. In general, HSR and MAPK signalling were activated in response to the inclusion of T. molitor. Moreover, triggering of apoptotic and autophagic processes and the onset of antioxidant defence mechanisms underlined the existence of physiological stress. Despite the apparent dietary-induced stress, rainbow trout in the present study exhibited no mortality and no significant effects regarding growth performance parameters. Specifically, TM60 dietary inclusion resulted in no changes in final body weight, weight gain, and specific growth rate. However, feed intake depicted a statistically significant decrease in TM60 fish compared to TM0 individuals. Nevertheless, nutrient stress should be considered a limiting factor regarding the utilization of T. molitor in O. mykiss diet due to the associated risks for health and welfare.

2.
Animals (Basel) ; 14(6)2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38540056

RESUMEN

Sixteen 35-day-old male crossbred rabbits (New Zealand white × Thai native breed) with an initial weight of 484 ± 11.3 g were randomly divided into two groups of eight, constituting control and treatment groups. The treatment group was orally administered a crude extract of butterfly pea (Clitoria ternatea L.) at 0.5 g/kg body weight from weaning (at 35 days) to slaughter (at 90 days). The effects on the phagocytic activity of blood polymorphonuclear leukocytes, serum biochemistry, meat quality, muscular lipid peroxidation, the apparent digestibility of dry matter and nutrients, and gut histology were studied. The results revealed that the phagocytic function of circulating leukocytes (75 and 90 days) and alveolar macrophages (90 days) did not differ between the two groups. At slaughter, treated rabbits had lower blood urea nitrogen concentrations and higher liver weight than control rabbits (p < 0.05). After chilling at 4 °C for 24 h, a lower meat pH and the alteration of meat color (brighter, less yellow, lower hue angle, and decreased color saturation) were observed in the treated group (p < 0.05). Furthermore, lipid peroxidation (measured at 3, 5, and 7 storage days) in the meat of treated rabbits was lower than in controls (p < 0.05). The apparent digestibility of organic matter and ether extract (analyzed at 46 days for 4 days) was improved in the treated group (p < 0.05), whereas gut histology was unaffected. In conclusion, butterfly pea extract supplementation did not affect phagocytic function but led to a modification in meat color, delayed lipid peroxidation, and improved digestibility.

3.
Front Vet Sci ; 11: 1330342, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38288139

RESUMEN

Introduction: The black soldier fly is considered the most promising insect species for mass production; however, information on the effects of handling, which is unavoidable during experimental trials and rearing practices, is still limited. Materials and methods: To address this gap, three different manipulation intensities were tested on 100 6-day-old larvae per replica (6 replicates/treatments) fed on Gainesville diet: (1) hard-handled (HH), larvae underwent continuous manipulation until the end of larval stage, (2) soft-handled (SH), larvae were manipulated after the appearance of the first prepupa, (3) no-handled (NH), larvae remained untouched. Every 4 days from the beginning to the end of the larval stage, the manipulations lasted 30 min and occurred under laboratory conditions (20°C). During the sampling operations, at least 30 larvae were randomly extracted, washed, dried, and weight-mimicked. At the end of larval stage, all the boxes remained untouched until the adult fly stage, and the emergency rate and sex ratio were evaluated on dead flies. Data were statistically analyzed using IBM SPSS V20.0.0 software and the considered significance level was p < 0.05. Results: The larval stage lasted 8.2 days for both HH and SH (p > 0.05). Despite the HH larvae being the most manipulated, no difference was also observed in final weight (HH, 160 mg; SH, 150 mg; p > 0.05) and survival rate (HH, 96.2%; SH, 94.5%; p > 0.05). The manipulation did not influence the bioconversion capacity of the larvae (bioconversion efficiency corrected for the residue: HH, 14.3%; SH, 12.91%; reduction rate: HH, 58.4%; SH, 55.9%; waste reduction index: HH, 7.28%/day; SH, 7.25%/day; p > 0.05). Finally, the development time from larva to fly (about 20.7; p > 0.05), the emergency rate (NH: 92.8%; SH: 89.5%; HH: 82.7%) and sex ratio (~1.2% to male flies) were not affected by the handling (p > 0.05). Discussion: In conclusion, the handling procedures used in the current study did not influence the life history traits of the black soldier fly. However, further studies are needed to evaluate if different experimental protocols on various scales, the colony strain or other handling procedures may suggest a different scenario or confirm the results.

4.
BMC Microbiol ; 23(1): 248, 2023 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-37674159

RESUMEN

BACKGROUND: Sustainable aquaculture relies on multiple factors, including water quality, fish diets, and farmed fish. Replacing fishmeal (FM) with alternative protein sources is key for improving sustainability in aquaculture and promoting fish health. Indeed, great research efforts have been made to evaluate novel feed formulations, focusing especially on the effects on the fish gut microbiome. Few studies have explored host-environment interactions. In the present study, we evaluated the influence of novel insect-based (Tenebrio molitor) fish diets on the microbiome at the water-fish interface in an engineered rainbow trout (Oncorhynchus mykiss) farming ecosystem. Using 16S rRNA gene metabarcoding, we comprehensively analyzed the microbiomes of water, tank biofilm, fish intestinal mucus, fish cutis, and feed samples. RESULTS: Core microbiome analysis revealed the presence of a highly reduced core shared by all sample sources, constituted by Aeromonas spp., in both the control and novel feed test groups. Network analysis showed that samples were clustered based on the sample source, with no significant differences related to the feed formulation tested. Thus, the different diets did not seem to affect the environment (water and tank biofilm) and fish (cutis and intestinal mucus) microbiomes. To disentangle the contribution of feed at a finer scale, we performed a differential abundance analysis and observed differential enrichment/impoverishment in specific taxa, comparing the samples belonging to the control diet group and the insect-based diet group. CONCLUSIONS: Omic exploration of the water-fish interface exposes patterns that are otherwise undetected. These data demonstrate a link between the environment and fish and show that subtle but significant differences are caused by feed composition. Thus, the research presented here is a step towards positively influencing the aquaculture environment and its microbiome.


Asunto(s)
Microbiota , Oncorhynchus mykiss , Tenebrio , Animales , ARN Ribosómico 16S , Acuicultura , Dieta/veterinaria
8.
Anim Microbiome ; 5(1): 36, 2023 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-37537673

RESUMEN

BACKGROUND: The inclusion of alternative ingredients in poultry feed is foreseen to impact poultry gut microbiota. New feeding strategies (probiotics/prebiotics) must be adopted to allow sustainable productions. Therefore, the current study aimed to use metagenomics approaches to determine how dietary inclusion of prebiotic (inulin) plus a multi-strain probiotic mixture of Lactiplantibacillus plantarum and Lactiplantibacillus pentosus affected microbiota composition and functions of the gastro-intestinal tract of the broilers during production. Fecal samples were collected at the beginning of the trial and after 5, 11 and 32 days for metataxonomic analysis. At the end of the trial, broilers were submitted to anatomo-pathological investigations and caecal content was subjected to volatilome analysis and DNAseq. RESULTS: Probiotic plus prebiotic inclusion did not significantly influence bird performance and did not produce histopathological alterations or changes in blood measurements, which indicates that the probiotic did not impair the overall health status of the birds. The multi-strain probiotic plus inulin inclusion in broilers increased the abundance of Blautia, Faecalibacterium and Lachnospiraceae and as a consequence an increased level of butyric acid was observed. In addition, the administration of probiotics plus inulin modified the gut microbiota composition also at strain level since probiotics alone or in combination with inulin select specific Faecalibacterium prausnitzi strain populations. The metagenomic analysis showed in probiotic plus prebiotic fed broilers a higher number of genes required for branched-chain amino acid biosynthesis belonging to selected F. prausnitzi strains, which are crucial in increasing immune function resistance to pathogens. In the presence of the probiotic/prebiotic a reduction in the occurrence of antibiotic resistance genes belonging to aminoglycoside, beta-lactamase and lincosamide family was observed. CONCLUSIONS: The positive microbiome modulation observed is particularly relevant, since the use of these alternative ingredients could promote a healthier status of the broiler's gut.

9.
Poult Sci ; 102(5): 102578, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36933528

RESUMEN

The development of a healthy gut during prestarter and starter phases is crucial to drive chicken's productivity. This study aimed to evaluate the effects of a thermomechanical, enzyme-facilitated, coprocessed yeast and soybean meal (pYSM) on growth performance, organ weights, leg health, and gut development in broiler chickens. A total of 576 as-hatched broiler chicks were randomly allotted to 3 dietary treatments (8 replicates/treatment, 24 chickens/replicate): a control group (C) without the pYSM, a treatment group 1 (T1), in which the pSYM was included at 20, 10, 5, 0, and 0% levels in the prestarter, starter, grower, finisher I, and finisher II feeding phases, respectively, and a treatment group 2 (T2), in which the pSYM was included at 5, 5, 5, 0, and 0% levels in each feeding phase. On d 3 and 10, 16 broilers/treatment were euthanized. The T1 broilers tended to show higher live weight (d 3 and 7) and average daily gain (prestarter and starter phases) than the other groups (P ≤ 0.10). Differently, pYSM-based diets did not influence the growth performance of the other feeding phases and the whole experimental period (P > 0.05). Relative weights of pancreas and liver were also unaffected by pYSM utilization (P > 0.05). Litter quality tended to have higher average scores in C group (P = 0.079), but no differences were observed for leg health (P > 0.05). Histomorphometry of gut, liver, and bursa of Fabricius was not affected by diet (P > 0.05). Gut immunity was driven to an anti-inflammatory pattern, with the reduction of IL-2, INF-γ, and TNF-α in the duodenum of treated birds (d 3, P < 0.05). Also, MUC-2 was greater in the duodenum of C and T2 group when compared to T1 (d 3, P = 0.016). Finally, T1-fed chickens displayed greater aminopeptidase activity in the duodenum (d 3 and 10, P < 0.05) and jejunum (d 3, P < 0.05). Feeding high levels of pYSM (10-20%) to broilers in the first 10 d tended to improve growth performance in the prestarter and starter phases. It also positively downregulated proinflammatory cytokines during the first 3 d, as well as stimulated the aminopeptidase activity in the prestarter and starter periods.


Asunto(s)
Pollos , Suplementos Dietéticos , Animales , Saccharomyces cerevisiae , Harina , Dieta/veterinaria , Glycine max , Aminopeptidasas , Alimentación Animal/análisis , Fenómenos Fisiológicos Nutricionales de los Animales
10.
Science ; 379(6628): 138-139, 2023 01 13.
Artículo en Inglés | MEDLINE | ID: mdl-36634163

RESUMEN

Insect farming for livestock feed has the potential to replace conventional feed.


Asunto(s)
Alimentación Animal , Granjas , Insectos , Ganado , Animales
11.
Insect Sci ; 30(4): 933-946, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-36542450

RESUMEN

Insect proteins have been proposed for human and animal food production. Safeguarding the health status of insects in mass rearing allows to obtain high-quality products and to avoid severe economic losses due to entomopathogens. Therefore, new strategies for preserving insect health must be implemented. Modulation of the insect immune system through the diet is one such strategy. We evaluated gene expression of two antimicrobial peptides (one defensin and one cecropin) in Hermetia illucens (L.) (Diptera: Stratiomyidae) reared on different diets. Analyses were performed on prepupae and 10-day-old larvae reared on cereal- and municipal organic waste-based diets and on only prepupae reared on a cereal-based diet supplemented with sunflower, corn, or soybean oil. The inclusion of sunflower oil at different points in the cereal-based diet was also evaluated. Moreover, diet-driven differences in the inhibitory activity of the hemolymph were tested against Escherichia coli DH5α and Micrococcus yunnanensis HI55 using diffusion assays in solid media. Results showed that a municipal organic waste-based diet produced a significant overexpression of antimicrobial peptides only in prepupae. Inclusion of vegetable oils caused an upregulation of at least one peptide, except for the corn oil. Higher expression of both genes was observed when sunflower oil was added 5 days before pupation. All hemolymph samples showed an inhibitory activity against bacteria colonies. Our results suggest that municipal organic waste-based diet and vegetable oil-added diet may successfully impact the immune system of H. illucens. Such alternatives may also exist for other species of economic interest.


Asunto(s)
Dípteros , Humanos , Animales , Dípteros/genética , Péptidos Antimicrobianos , Aceite de Girasol , Dieta , Larva/genética , Grano Comestible , Expresión Génica
12.
Anim Nutr ; 12: 7-19, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36381064

RESUMEN

The use of insect meal in aquafeed formulations has recently gained attention. Detailed knowledge about the inclusion levels for pikeperch (Sander lucioperca), a promising candidate for intensive aquaculture in Europe remains, however, fragmented. In the present study, 4 isoproteic (45% dry matter) and isoenergetic (21 MJ/kg) diets were formulated, including a control diet (H0) containing 30% fishmeal (FM) on an as-fed basis and the other 3 diets in which FM protein was replaced by defatted black soldier fly (Hemetia illucens) meal (HIM) at 25%, 50%, and 100% (diet abbreviation H9, H18 and H36, corresponding to an inclusion level of 9%, 18% and 36%, respectively). The feeding trial was performed in triplicate groups of 50 juvenile pikeperch (mean weight, 68.7 g) fed with experimental diets for 84 d during which the growth performance, nutrient digestibility, fillet quality and economic and environmental sustainability of rearing pikeperch were evaluated. Our findings indicated that pikeperch in H0, H9, and H18 groups displayed better results regarding growth performance indices, except for survival rate where no significant difference among groups was recorded (P = 0.642). A significantly lower organ-somatic index, including hepatosomatic, viscerosomatic and perivisceral fat index, was found in fish in H18 groups than other groups (P < 0.05). Inclusion of HIM affected the digestibility of the nutrients and resulted in an almost linear reduction in the apparent digestibility coefficient of dry matter and protein. Concerning the fillet quality, dietary HIM negatively affected the protein and ash contents of the fish fillets, while the crude fat remained unchanged. Dietary HIM did not significantly modify total saturated, monounsaturated and polyunsaturated fatty acids in the fillets of fed pikeperch (P > 0.05) but did reduce total n-3 fatty acids (P = 0.001) and increased total n-6 (P < 0.001). Increasing inclusion levels of HIM reduced the environmental impacts associated with fish in-to-fish out ratio but entailed heavy burdens on energy use and eutrophication. Low and moderate inclusion levels of HIM did not negatively affect land use and water use compared to an HIM-free diet (P > 0.05). The addition of HIM at a level as low as 9% elicited a similar carbon footprint to that of the control diet. The economic conversion ratio and economic profit index were negatively affected at increased insect meal inclusion levels. This study has shown that the incorporation of HIM in feed formulations for pikeperch is feasible at inclusion levels of 18% without adverse effects on growth performance parameters. The feasibility also highlighted the environmental benefits associated with land use and marine resources required to produce farmed fish.

13.
Animals (Basel) ; 12(24)2022 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-36552463

RESUMEN

This study aimed to evaluate the effects of Lactobacillus acidophilus D2/CSL (L-1 × 109 cfu/kg feed/day) on biochemical parameters, faecal score (FS), cecal pH, gut morphometry, microbiota and cecal short-chain fatty acid (SCFAs) in rabbits. Three zootechnical trials were performed and in each trial 30 rabbits were allotted to two groups; a probiotic group (L) and a control group (C). At slaughter (day 45), samples of blood, duodenum, jejunum, ileum, liver and spleen were collected and submitted to histomorphometric analyses. Blood biochemical analyses, cecal microbiota and SCFAs determination were also performed. In trial 1 and 3, L. acidophilus D2/CSL did not affect productive parameters (p > 0.05). However, L group of trial 1 showed a lower morbidity and mortality compared to the control. In trial 2, C group showed a higher daily feed intake (p = 0.018) and a positive statistical tendency for live weight and average daily gain (p = 0.068). On the contrary, albumin was higher and ALFA-1 globulin was lower in the C group compared to L (p < 0.05). In all the trials, FS, cecal pH, histomorphometry, microbiota and SCFAs were unaffected. In conclusion, L. acidophilus D2/CSL did not impair growth performances, gut and rabbit's health, reducing morbidity and mortality.

14.
J Anim Sci Biotechnol ; 13(1): 138, 2022 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-36536465

RESUMEN

BACKGROUND: The most used protein sources in ruminant nutrition are considered as having negative impacts in terms of environmental sustainability and competition with human nutrition. Therefore, the investigation of alternative and sustainable feedstuffs is becoming a priority in ruminant production systems. RESULTS: This trial was designed to evaluate eight full-fat insect meals (Acheta domesticus - ACD; Alphitobius diaperinus - ALD; Blatta lateralis - BL; Gryllus bimaculatus - GB; Grylloides sygillatus - GS; Hermetia illucens - HI; Musca domestica - MD; and Tenebrio molitor - TM) as potential protein and lipid sources in ruminant nutrition. Fermentation parameters and fatty acids (FA) of rumen digesta after 24-h in vitro ruminal incubation of the tested insect meals were measured and compared with those of three plant-based meals (soybean meal, rapeseed meal and sunflower meal) and fishmeal (FM). Similarly to FM, the insect meals led to a significantly lower total gas production (on average, 1.75 vs. 4.64 mmol/g dry matter-DM), methane production (on average, 0.33 vs. 0.91 mmol/g DM), volatile FA production (on average, 4.12 vs. 7.53 mmol/g DM), and in vitro organic matter disappearance (on average, 0.32 vs. 0.59 g/g) than those observed for the plant meals. The insect meals also led to lower ammonia of rumen fluid, when expressed as a proportion of total N (on average, 0.74 vs. 0.52 for the plant and insect meals, respectively), which could be an advantage provided that intestinal digestibility is high. Differences in ruminal fermentation parameters between the insect meals could be partially explained by their chitin, crude protein and ether extract contents, as well as by their FA profile. In particular, high content of polyunsaturated FA, or C12:0 (in HI), seems to partially inhibit the ruminal fermentations. CONCLUSIONS: The tested full-fat insect meals appear to be potentially an interesting protein and lipid source for ruminants, alternative to the less sustainable and commonly used ones of plant origin. The FA profile of the rumen digesta of ACD, ALD, GB, GS and TM, being rich in n-6 polyunsaturated FA, could be interesting to improve the quality of ruminant-derived food products.

15.
Animals (Basel) ; 12(23)2022 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-36496753

RESUMEN

This study aimed to assess the effect of Hermetia illucens meal (HM) dietary inclusion on meagre oxidative status. Thus, fish were fed a fishmeal-based diet (CTR diet) and three other diets with increasing levels of HM inclusion, namely 10%, 20%, and 30% (diets HM10, HM20, and HM30, respectively). At the end of the trial, hepatic and intestine superoxide dismutase, catalase, and glucose-6-phosphate dehydrogenase activities and malondialdehyde concentration were unaffected by the diet composition. Liver glutathione peroxidase activity was higher in the fish fed the HM20 diet than in the fish fed the CTR and HM30 diets, and glutathione reductase activity linearly increased with the dietary HM level. The hepatic total glutathione and reduced glutathione contents were significantly lower in fish fed the HM20 diet than in fish fed the CTR and HM10 diets. In the intestine, the oxidized glutathione (GSSG) content and oxidative stress index linearly increased with the increase in dietary HM level, with the GSSG content of fish fed the HM20 diet being significantly higher than of fish fed the CTR diet. In conclusion, 30% HM might be included in meagre diets without negatively affecting hepatic and intestine oxidative status.

16.
Biology (Basel) ; 11(7)2022 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-36101344

RESUMEN

Insect meal (IM), recently authorized for use in aquafeeds, positions itself as a promising commodity for aquafeed inclusion. However, insects are also rich in chitin, a structural polysaccharide present in the exoskeleton, which is not digested by fish, resulting in lower fish performance. Through the application of a dietary pressure, this study aimed to modulate European sea bass gut microbiota towards the enrichment of chitinolytic bacteria to allow the isolation of novel probiotics capable of improving the use of IM-containing diets, overcoming chitin drawbacks. Five isoproteic (44%) and isolipidic (18%) diets were used: a fish meal (FM)-based diet (diet CTR), a chitin-supplemented diet (diet CHIT5), and three diets with either 25% of Hermetia illucens and Tenebrio molitor larvae meals (HM25 and TM25, respectively) or H. illucens exuviae meal (diet HEM25) as partial FM substitutes. After an 8-week feeding trial, the results showed a clear modulatory effect towards spore-forming bacteria by HM25 and HEM25 diets, with the latter being responsible for the majority of the chitinolytic fish isolates (FIs) obtained. Sequential evaluation of the FI hemolytic activity, antibiotic resistance, total chitinolytic activity, sporulation, and survival in gastrointestinal-like conditions identified FI645 and FI658 as the most promising chitinolytic probiotics for in vivo application.

17.
Front Physiol ; 13: 930158, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36091356

RESUMEN

The use of insect live larvae as environmental enrichment has recently been proposed in broiler chickens, but the concomitant administration of black soldier fly (BSF) and yellow mealworm (YM) has never been tested yet. Therefore, the present study aims to evaluate the effects of live BSF and YM larvae as environmental enrichments for broiler chickens by means of plumage status, behaviour, leg health, and excreta corticosterone metabolites (CM). A total of 180 4-day old male Ross 308 broiler chickens were randomly distributed in 3 experimental treatments (6 replicates/treatment, 10 birds/replicate) and fed for 35 days as follows: 1) control (C, commercial feed), 2) BSF: C + 5% of the expected daily feed intake [DFI] live BSF larvae and 3) YM: C + 5% of the expected DFI live YM larvae. Feathering, hock burn (HB) and footpad dermatitis (FPD) scores (end of the trial), as well as behavioural observations (beginning of the trial [T0] and every 11 days [T1, T2 and T3] during morning, larvae intake and afternoon) through video recordings, were assessed, and excreta samples collected to evaluate the CM. Feathering, HB and FPD scores, and excreta CM were unaffected by insect live larvae administration (p > 0.05). In the morning, the insect-fed birds displayed higher stretching, wing flapping, ground pecking (at T1 and T3), as well as lower preening (at T1 and T2), than the C group (p < 0.05). During the larvae intake, higher scratching, wing flapping and ground pecking, as well as lower stretching, preening and laying down, were observed in the insect-fed (scratching, stretching and laying down) or YM-fed (wing flapping, ground pecking and preening) groups than the C birds (p < 0.05). In the afternoon, insect live larvae administration increased wing flapping (YM) and laying down (BSF and YM), as well as decreased ground pecking (YM, p < 0.05). In conclusion, the administration of insect live larvae as environmental enrichment (especially YM) was capable of positively influencing the bird welfare through the stimulation of foraging behaviour, increase in activity levels, and reduction in bird frustration, without affecting the plumage status, leg health, and excreta CM.

18.
Curr Issues Mol Biol ; 44(7): 3238-3252, 2022 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-35877447

RESUMEN

In aquafeeds in which plant proteins are used to replace fishmeal, exogenous methionine (Met) sources are demanded to balance the amino acid composition of diets and meet the metabolic fish requirements. Nonetheless, since different synthetic Met sources are commercially available, it is important to determine their bioavailability and efficacy. To address this issue, we conducted a two-month feeding trial with rainbow trout (Oncorhynchus mykiss), which were fed diets supplemented with five different forms of Met: Met-Met, L-Met, HMTBa, DL-Met, and Co DL-Met. No differences in growth performance were found in trout fed with different Met forms, but changes in the whole-body composition were found. In particular, Met-Met and L-Met promoted a significant body lipid reduction, whereas the protein retention was significantly increased in fish fed with HMTBa and Co DL-Met. The latter affected the hepatic Met metabolism promoting the trans-sulfuration pathway through the upregulation of CBS gene expression. Similarly, the L-Met enhanced the remethylation pathway through an increase in BHMT gene expression to maintain the cellular demand for Met. Altogether, our findings suggest an optimal dietary intake of all tested Met sources with similar promoting effects on fish growth and hepatic Met metabolism. Nevertheless, the mechanisms underlying these effects warrant further investigation.

19.
Front Physiol ; 13: 920289, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35846007

RESUMEN

The sustainable development of modern aquaculture must rely on a significant reduction of the fish meal (FM) used in aquafeed formulations. However, FM substitution with alternative ingredients in diets for carnivorous fish species often showed reduced nutrient absorption, significantly perturbed metabolisms, and histological changes at both hepatic and intestinal levels. In the present study, rainbow trout (Oncorhynchus mykiss) were fed three different experimental aquafeeds. A control diet with higher FM content (27.3%) than two test formulations in which FM was substituted with two more sustainable and promising alternatives: insect meal (Hermetia illucens larvae = 10.1%, FM = 11.6%) and poultry by-products meal (PBM = 14.8%; FM = 11.7%). Combined metabolomics and proteomics analyses of fish liver, together with histological examination of liver and intestine demonstrated that a well-balanced formulation of nutrients in the three diets allowed high metabolic compatibility of either substitution, paving the way for a deeper understanding of the impact of novel raw materials for the fish feed industry. Results show that the main metabolic pathways of nutrient absorption and catabolism were essentially unaltered by alternative feed ingredients, and also histological alterations were negligible. It is demonstrated that the substitution of FM with sustainable alternatives does not have a negative impact on fish metabolism, as long as the nutritional requirements of rainbow trout are fulfilled.

20.
Front Physiol ; 13: 892550, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35669584

RESUMEN

The present study aimed to investigate the growth performance, whole-body proximate composition, and intestinal microbiome of rainbow trout strains when selected and non-selected for weight gain on all-plant protein diets. A 2x2 factorial design was applied, where a selected (United States) and a non-selected (ITA) rainbow trout strain were fed using either an all-plant protein (PP) or a commercial low-FM diet (C). Diets were fed to five replicates of 20 (PP) or 25 (C) fish for 105 days. At the end of the trial, growth parameters were assessed, and whole fish (15 pools of three fish/diet) and gut samples (six fish/diet) were collected for whole-body proximate composition and gut microbiome analyses, respectively. Independent of the administered diet, the United States strain showed higher survival, final body weight, weight gain, and specific growth rate when compared to the ITA fish (p < 0.001). Furthermore, decreased whole-body ether extract content was identified in the PP-fed United States rainbow trout when compared to the ITA strain fed the same diet (p < 0.001). Gut microbiome analysis revealed the Cetobacterium probiotic-like genus as clearly associated with the United States rainbow trout, along with the up-regulation of the pathway involved in starch and sucrose metabolism. In summary, the overall improvement in growth performance and, to a lesser extent, whole-body proximate composition observed in the selected rainbow trout strain was accompanied by specific, positive modulation of the intestinal microbiome.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...