RESUMEN
OBJECTIVES: In this first-in-human study, we prospectively studied the vascular compatibility and mechanical performance of a novel bare ultra-high molecular weight amorphous PLLA bioresorbable scaffold (BRS, FORTITUDE®, Amaranth Medical, Mountain View, California) up to two years after implantation using multimodality imaging techniques. BACKGROUND: The vascular biocompatibility of polymers used in BRS has not been fully characterized in the absence of anti-proliferative drugs. METHODS: A total of 10 patients undergoing single scaffold implantation were included in the final analysis and were followed up using optical coherence tomography (OCT) at 2-years. All devices were implanted under angiographic and intravascular ultrasound (IVUS) guidance. Angiographic and IVUS follow up was performed at 6 months. Additionally, angiography and OCT imaging were performed at 2-years. RESULTS: At 6 months, mean intra-scaffold angiographic MLD slightly decreased from baseline procedural values. However, at 2 years, mean angiographic MLD increased (post procedure; 2.9 [2.7, 3.1] mm vs. 6 months; 2.1 [1.6, 2.5] vs. 2 years; 2.4 [2.1, 2.6], P = .001). Also, angiographic percent diameter stenosis decreased and late lumen gain increased between 6 months and 2 years follow up. Mean neointimal hyperplasia volume assessed by IVUS at 6 months was 26% [15.2, 29.3]. At 2 years OCT follow up neointimal hyperplasia volume was 24.2% [19.4, 28.9]. No presence of neoatherosclerosis was identified in any of the analyzed cases. CONCLUSION: At 2 years, this novel PLLA-based BRS induced expansive vascular remodeling from 6 to 24 months, a biological phenomenon that appears to be independent of the presence of anti-proliferative drugs.
Asunto(s)
Implantes Absorbibles , Angiografía Coronaria , Enfermedad de la Arteria Coronaria/terapia , Vasos Coronarios/diagnóstico por imagen , Intervención Coronaria Percutánea/instrumentación , Poliésteres/química , Tomografía de Coherencia Óptica , Ultrasonografía Intervencional , Remodelación Vascular , Anciano , Enfermedad de la Arteria Coronaria/diagnóstico por imagen , Enfermedad de la Arteria Coronaria/patología , Enfermedad de la Arteria Coronaria/fisiopatología , Vasos Coronarios/patología , Vasos Coronarios/fisiopatología , Estudios de Factibilidad , Femenino , Humanos , Hiperplasia , Masculino , Persona de Mediana Edad , Peso Molecular , Imagen Multimodal , Neointima , Intervención Coronaria Percutánea/efectos adversos , Valor Predictivo de las Pruebas , Estudios Prospectivos , Diseño de Prótesis , Factores de Tiempo , Resultado del TratamientoRESUMEN
OBJECTIVE: To evaluate the biological effect of microengineered stent grooves (MSG) on early strut healing in humans by performing optical coherence tomography (OCT) analysis 3 weeks following the implantation. BACKGROUND: In the experimental setting, MSG accelerate endothelial cell migration and reduce neointimal proliferation compared with bare metal stent (BMS). METHODS: A total of 37 patients undergoing percutaneous coronary intervention with de novo coronary lesions were randomly assigned to either MSG (n=19) or an identical BMS controls (n=18). All patients underwent OCT imaging at 3 weeks. A total of 7959 struts were included in the final analysis. RESULTS: At 3 weeks following stent implantation, almost all struts analysed (~97%) had evidence of tissue coverage. The percentage of partially covered struts was comparable between both groups. However, the percentage of fully embedded struts was higher in the BMS group (81.22%, 49.75-95.52) compared with the MSG group (74.21%, 58.85-86.38). The stent-level analysis demonstrated reduction in neointimal formation (neointimal hyperplasia area and volume reduction of ~14% and ~19%, respectively) in the MSG versus the BMS group. In the strut-level analysis, an even greater reduction (~22% in neointimal thickness) was seen in the MSG group. Layered neointimal was present in ~6% of the OCT frames in the BMS group while it was not present in the MSG group. CONCLUSIONS: MSG induced a more homogeneous and predictable pattern of surface healing in the early stages following stent implantation. The biological effect of MSG on stent healing has the potential to improve the safety profile of current generation drug-eluting stents. CLASSIFICATIONS: BMS, OCT, clinical trials.