Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Adv Sci (Weinh) ; 10(19): e2207223, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37088731

RESUMEN

There is a need for point-of-care bacterial sensing and identification technologies that are rapid and simple to operate. Technologies that do not rely on growth cultures, nucleic acid amplification, step-wise reagent addition, and complex sample processing are the key for meeting this need. Herein, multiple materials technologies are integrated for overcoming the obstacles in creating rapid and one-pot bacterial sensing platforms. Liquid-infused nanoelectrodes are developed for reducing nonspecific binding on the transducer surface; bacterium-specific RNA-cleaving DNAzymes are used for bacterial identification; and redox DNA barcodes embedded into DNAzymes are used for binding-induced electrochemical signal transduction. The resultant single-step and one-pot assay demonstrates a limit-of-detection of 102 CFU mL-1 , with high specificity in identifying Escherichia coli amongst other Gram positive and negative bacteria including Klebsiella pneumoniae, Staphylococcus aureus, and Bacillus subtilis. Additionally, this assay is evaluated for analyzing 31 clinically obtained urine samples, demonstrating a clinical sensitivity of 100% and specify of 100%. When challenging this assay with nine clinical blood cultures, E. coli-positive and E. coli-negative samples can be distinguished with a probability of p < 0.001.


Asunto(s)
ADN Catalítico , Escherichia coli , Escherichia coli/genética , Sensibilidad y Especificidad , Bacterias , ADN
2.
Eur J Clin Microbiol Infect Dis ; 41(8): 1115-1125, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35841452

RESUMEN

Matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF) mass spectrometry systems are designed for rapid and reliable microbial identification. VITEK MS PRIME is the bioMérieux's new generation instrument equipped with a continuous load-and-go sample loading system, urgent slide prioritization for critical patient samples and new internal components for faster identification. The aim of this study was to assess the performance of VITEK MS PRIME and to compare it to that of the VITEK MS system. In addition, at two sites, we performed a time-and-motion study to evaluate the efficiency of sample analysis from colony picking to slide removal from the instrument. We analyzed by VITEK MS and VITEK MS PRIME a total of 1413 isolates (1320 bacterial and 76 yeast) deriving from routine diagnostic samples that came into four laboratories in Canada, France, Italy, and Spain. VITEK MS PRIME and VITEK MS were concordant to the species and genus level for 1354/1413 (95.8%) and to the species level for 1341/1413 (94.9%). The identification and concordance rates in individual centers were largely homogenous. Overall, VITEK MS PRIME identified 1370/1413 (97.0%) of isolates compared to 1367/1413 (96.7%) identified by VITEK MS. Identification rates were consistently high for all microorganism categories. A time-and-motion study showed that the use of VITEK MS PRIME was associated with significant time saving. VITEK MS PRIME performs as well as VITEK MS and reduces the time necessary for pathogen identification. To fully optimize the laboratory process and obtain maximum efficiency, VITEK MS PRIME must be integrated into the laboratory workflow.


Asunto(s)
Bacterias , Levaduras , Canadá , Humanos , Laboratorios , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...