Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Small ; 19(22): e2300251, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36828799

RESUMEN

Spin crossover (SCO) complexes sensitively react on changes of the environment by a change in the spin of the central metallic ion making them ideal candidates for molecular spintronics. In particular, the composite of SCO complexes and ferromagnetic (FM) surfaces would allow spin-state switching of the molecules in combination with the magnetic exchange interaction to the magnetic substrate. Unfortunately, when depositing SCO complexes on ferromagnetic surfaces, spin-state switching is blocked by the relatively strong interaction between the adsorbed molecules and the surface. Here, the Fe(II) SCO complex [FeII (Pyrz)2 ] (Pyrz = 3,5-dimethylpyrazolylborate) with sub-monolayer thickness in contact with a passivated FM film of Co on Au(111) is studied. In this case, the molecules preserve thermal spin crossover and at the same time the high-spin species show a sizable exchange interaction of > 0.9 T with the FM Co substrate. These observations provide a feasible design strategy in fabricating SCO-FM hybrid devices.

2.
Inorg Chem ; 60(21): 16016-16028, 2021 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-34633179

RESUMEN

A comprehensive experimental and theoretical study of both thermal-induced spin transition (TIST) as a function of pressure and pressure-induced spin transition (PIST) at room temperature for the two-dimensional Hofmann-like SCO polymer [Fe(Fpz)2Pt(CN)4] is reported. The TIST studies at different fixed pressures have been carried out by magnetic susceptibility measurements, while PIST studies have been performed by means of powder X-ray diffraction, Raman, and visible spectroscopies. A combination of the theory of elastic interactions and numerical Monte Carlo simulations has been used for the analysis of the cooperative interactions in TIST and PIST studies. A complete (T, P) phase diagram for the compound [Fe(Fpz)2Pt(CN)4] has been constructed. The critical temperature of the spin transition follows a lineal dependence with pressure, meanwhile the hysteresis width shows a nonmonotonic behavior contrary to theoretical predictions. The analysis shows the exceptional role of the total entropy and phonon contribution in setting the temperature of the spin transition and the width of the hysteresis. The anomalous behavior of the thermal hysteresis width under pressure in [Fe(Fpz)2Pt(CN)4] is a direct consequence of a local distortion of the octahedral geometry of the Fe(II) centers for pressures higher than 0.4 GPa. Interestingly, there is not a coexistence of the high- and low-spin (HS and LS, respectively) phases in TIST experiments, while in PIST experiments, the coexistence of the HS and LS phases in the metastable region of the phase transition induced by pressure is observed for a first time in a first-order gradual spin transition with hysteresis.

3.
Inorg Chem ; 59(15): 10548-10556, 2020 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-32657582

RESUMEN

Two types of experiments conducted to investigate the effect of pressure on the spin crossover (SCO) properties of the 2D Fe(II) coordination polymer formulated {Fe[bipy(ttr)2]}n are reported, namely, (1) magnetic measurements performed at variable temperature and at fixed pressure and (2) visible spectroscopy at variable pressure and fixed temperature. The magnetic experiments carried out under a hydrostatic pressure constraint of 0.04, 0.08, and 0.8 GPa reveal a two-step spin transition behavior. The characteristic critical temperatures of the spin transition are shifted upward in temperature as pressure increases. The slope of the straight-line of the Tc vs P plot, dTc/dP, is 775 K/GPa and 300 K/GPa, for the high temperature and the low temperature steps, respectively. These values are remarkably large and denote the extreme sensitivity of the material to the application of pressure. Indeed, the visible spectroscopic measurements performed at 293 K show that a complete spin transition is induced at pressures as low as 0.4 GPa. Moreover, the pressure-induced spin transition is reversible and shows an asymmetric hysteresis. An analysis of the cooperative interactions of the thermal- and pressure-induced spin transition in the framework of the model of elastic interactions reveals that the elastic energy of the lattice as well as the interaction parameter between the SCO centers change during the course of the spin transition. Consequently, the character of the spin transition varies from abrupt for the high temperature step to continuous for the low temperature step.

4.
Inorg Chem ; 57(14): 8458-8464, 2018 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-29947511

RESUMEN

Pressure effects on the spin transition of the three-dimensional (3D) porous coordination polymer {Fe(pz)[Pt(CN)4]} have been investigated in the interval 105 Pa-1.0 GPa through variable-temperature (10-320 K) magnetic susceptibility measurements and spectroscopic studies in the visible region at room temperature. These studies have disclosed a different behavior of the compound under pressure. In the magnetic experiments, a temperature independent paramagnetic behavior has been observed under 0.4 GPa. In contrast, at room temperature and at 0.8 GPa, a complete HS-to-LS transition has been evidenced. The differences in the magnetic behavior are strongly related with the porous structure of the compound and its capability to adsorb the oil used as pressure transmission media in the magnetic experiments.

5.
Chemistry ; 15(41): 10960-71, 2009 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-19746366

RESUMEN

Twelve coordination polymers with formula {Fe(3-Xpy)(2)[M(II)(CN)(4)]} (M(II): Ni, Pd, Pt; X: F, Cl, Br, I; py: pyridine) have been synthesised, and their crystal structures have been determined by single-crystal or powder X-ray analysis. All of the fluoro and iodo compounds, as well as the chloro derivative in which M(II) is Pt, crystallise in the monoclinic C2/m space group, whereas the rest of the chloro and all of the bromo derivatives crystallise in the orthorhombic Pnc2 space group. In all cases, the iron(II) atom resides in a pseudo-octahedral [FeN(6)] coordination core, with similar bond lengths and angles in the various derivatives. The major difference between the two kinds of structure arises from the stacking of consecutive two-dimensional {Fe(3-Xpy)(2)[M(II)(CN)(4)]}(infinity) layers, which allows different dispositions of the X atoms. The fluoro and chloro derivatives undergo cooperative spin crossover (SCO) with significant hysteretic behaviour, whereas the rest are paramagnetic. The thermal hysteresis, if X is F, shifts toward room temperature without changing the cooperativity as the pressure increases in the interval 10(5) Pa-0.5 GPa. At ambient pressure, the SCO phenomenon has been structurally characterised at different significant temperatures, and the corresponding thermodynamic parameters were obtained from DSC calorimetric measurements. Compound {Fe(3-Clpy)(2)[Pd(CN)(4)]} represents a new example of a "re-entrant" two-step spin transition by showing the Pnma space group in the intermediate phase (IP) and the Pnc2 space group in the low-spin (LS) and high-spin (HS) phases.

6.
Inorg Chem ; 46(23): 9646-54, 2007 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-17927168

RESUMEN

A new family of cyanide-based spin-crossover polymers with the general formula {Fe(5-Br-pmd)z[M(CN)x]y} [M=AgI (1), AuI (2), NiII (3), PdII (4), PtII (5); 5-Br-pmd=5-bromopyrimidine; z=1 or 2, x=2 or 4, and y=2 or 1] have been synthesized and characterized using single-crystal X-ray diffraction (XRD), X-ray powder diffraction (XRPD), magnetic susceptibility measurements, and differential scanning calorimetry (DSC). At 293 K, compound 1 presents the monoclinic space group C2/c, whereas at 120 K, it changes to the monoclinic space group P21/c. At 293 K, the crystal structure of 1 displays an uninodal three-dimensional network whose nodes, constituted of FeII, lie at the inversion center of an elongated octahedron. The equatorial bond lengths are defined by the N atoms of four [AgI(CN)2]- groups belonging to two crystallographically nonequivalent AgI atoms, Ag(1) and Ag(2). They are shorter than those of the axial positions occupied by the N atoms of the 5-Br-pmd ligands. The Fe-N average bond length of 2.1657(7) A is consistent with a high-spin (HS) state for the FeII ions. At 120 K, the crystal structure changes refer mainly to the FeII environment. There are two crystallographically independent FeII ions at this temperature, Fe(1) and Fe(2), which adopt the HS and low-spin (LS) states, respectively. The average Fe-N bond length for Fe(1) [2.174(5) A] and Fe(2) [1.955(5) A] agrees well with the reported magnetic data at this temperature. The spin transition of the FeII ions labeled as Fe(1) is found to be centered at Tc downward arrow=149 K and Tc upward arrow=167 K and accompanied by a drastic change of color from orange (HS) to red (LS). Magnetic susceptibility measurements under applied hydrostatic pressure performed on 1 have shown a linear displacement of the transition to higher temperatures while the hysteresis width remains unaltered in the interval of pressures of 105 Pa to 0.34 GPa. A further increase of the pressure induces the spin transition in the Fe(2) ions, which is completely accomplished at 1.12 GPa (T1/2=162 K). Compounds 1 and 2 are isostructural, but 2 does not exhibit spin-transition properties; the FeII centers remain in the HS state in the temperature range investigated, 5-300 K. Compounds 3-5 are not similar or isostructural with 1. A two-dimensional structure for 3-5 has been proposed on the basis of analytical data and the XRPD patterns. Compounds 3-5 undergo first-order spin transition where the critical temperatures for the cooling (Tc downward arrow) and warming (Tc upward arrow) modes are 170 and 180 K (3), 204 and 214 K (4), and 197 and 223 K (5), respectively. It is worth mentioning the color change from yellow to orange observed in 3-5 upon spin transition. The thermodynamic parameters associated with the spin transition estimated from DSC measurements are DeltaH=6 kJ mol(-1) (1), 11 kJ mol(-1) (3), 16 kJ mol(-1) (4), and 16 kJ mol(-1) (5) and DeltaS=38 J K(-1) mol(-1) (1), 62 J K(-1) mol(-1) (3), 76 J K-1 mol(-1) (4), and 81 J K(-1) mol(-1) (5).

7.
Inorg Chem ; 45(24): 9670-9, 2006 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-17112262

RESUMEN

The crystal structure of [Fe(bt)2(NCS)2] (A) was determined by X-ray diffraction at 293 and at 150 K in order to analyze the structural changes associated with the spin transition. The space group is P1 with Z = 2 at both temperatures. Lattice constants are as follows: a = 8.5240(4), b = 11.0730(6), c = 12.5300(8) at 293 K and a = 8.1490(4), b = 11.4390(5), c = 12.1270(6) at 150 K. The iron(II) atom lies at the center of a distorted [FeN6] defined by two bt ligands arranged in a cis conformation. The two remaining coordination positions are occupied by two isothiocyanate anions. The average bond lengths of 2.159(4) A (293 K) and 1.951(2) A (150 K) clearly indicate the change in spin configuration. The trigonal distortion parameter phi has a value of 9.6 degrees and 5.5 degrees at 293 and 150 K, respectively. For A, DeltaV = DeltaV(SCO) = 28 A(3) per formula unit and is accompanied by a hysteresis of 10 K. chi(M)T vs T curves at atmospheric pressure for A show an abrupt spin transition with Tc downward arrow = 176 K and Tc upward arrow = 187 K. The thermodynamic parameters associated with the spin transition are DeltaH = 8.4 +/- 0.4 kJ mol(-1) and DeltaS = 46.5 +/- 3 J K mol(-1). The thermal dependence of the magnetic susceptibility at different pressures, 0.1-0.91 GPa, points out an unusual behavior, which can only be understood in terms of a crystallographic phase transition or a change in the bulk modulus of the complex. Polymorph B crystallizes in the C2/c space group with an average Fe-N bond length of 2.168(2) A and phi = 14.7 degrees at 293 K. B remains in the HS configuration even at pressures of 1.06 GPa.

8.
Inorg Chem ; 45(11): 4413-22, 2006 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-16711691

RESUMEN

A series of new complexes belonging to the [Co(4-terpyridone)2]X(p) x nS family (4-terpyridone = 2,6-bis(2-pyridyl)-4(1H)-pyridone) have been synthesized and characterized, using X-ray single crystal determination and magnetic susceptibility studies, to be X = [BF4]- (p = 2) and S = H2O for polymorphs 1 and 2, X = [BF4]- (p = 1) and [SiF6]2- (p = 0.5) and S = CH(3)OH for 3, X = [SiF6]2- (p = 1) and S = 3CH3OH and H2O for 4, X = [Co(NCS)4]2- (p = 1) and S = 0.5CH3OH for 5, X = I- (p = 2) and S = 5H2O for 6, X = [PF6]- (p = 1) for 7, and X = [NO3]- (p = 2) for 8. Compounds 1-7 can be grouped in three sets according to the space group in which they crystallize: (i) P1 triclinic (1, 3), (ii) P2(1) monoclinic (2), and (iii) P2(1)/c monoclinic (4-7). The tridentate 4-terpyridone ligands coordinate the Co(II) ions in a mer fashion defining essentially tetragonally compressed [CoN6] octahedrons. The Co-N axial bonds involving the pyridone rings are markedly shorter than the Co-N equatorial bonds collectively denoted as Co-N(central) and Co-N(distal), respectively. The differences in the average Co-N(central) or Co-N(distal) distances observed for 1-7 reflect the different spin states of Co(II). Complexes 7 and 4' are fully high spin (HS), while 5 and 6 are low spin (LS). However, the counterion [Co(NCS)4]2- in complex 5 is high spin. Complexes 1, 2, 3, and 8 exhibit spin-crossover behavior in the 400-100 K temperature region. Compounds 1 and 2 are polymorphs, and interestingly, 1 irreversibly transforms into 2 above 340 K because of a crystallographic phase transition which involves a drastic modification of the crystal packing. The relevant thermodynamic parameters associated with the spin transition of polymorph 2 have been estimated using the regular solution theory leading to DeltaH = 3.04 kJ mol(-1), DeltaS = 20 J K(-1) mol(-1), and Gamma = 0.95 kJ mol(-1).

9.
Dalton Trans ; (12): 2062-79, 2005 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-15957044

RESUMEN

This article reviews the most relevant chemical and structural aspects that influence the spin-crossover phenomenon (SCO). Special attention is focussed on the recent development of SCO coordination polymers. The different approaches currently being explored in order to achieve multifunctionality in SCO materials are discussed.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...