Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Plant Physiol ; 297: 154241, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38640547

RESUMEN

Nitrogen (N) is an essential nutrient for plants, and the sources from which it is obtained can differently affect their entire development as well as stress responses. Distinct inorganic N sources (nitrate and ammonium) can lead to fluctuations in the nitric oxide (NO) levels and thus interfere with nitric oxide (NO)-mediated responses. These could lead to changes in reactive oxygen species (ROS) homeostasis, hormone synthesis and signaling, and post-translational modifications of key proteins. As the consensus suggests that NO is primarily synthesized in the reductive pathways involving nitrate and nitrite reduction, it is expected that plants grown in a nitrate-enriched environment will produce more NO than those exposed to ammonium. Although the interplay between NO and different N sources in plants has been investigated, there are still many unanswered questions that require further elucidation. By building on previous knowledge regarding NO and N nutrition, this review expands the field by examining in more detail how NO responses are influenced by different N sources, focusing mainly on root development and abiotic stress responses.


Asunto(s)
Óxido Nítrico , Nitrógeno , Raíces de Plantas , Estrés Fisiológico , Óxido Nítrico/metabolismo , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/metabolismo , Raíces de Plantas/fisiología , Nitrógeno/metabolismo , Nitratos/metabolismo , Compuestos de Amonio/metabolismo , Plantas/metabolismo , Especies Reactivas de Oxígeno/metabolismo
2.
Front Plant Sci ; 15: 1344820, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38425802

RESUMEN

Desiccation tolerance in vegetative tissues enables resurrection plants to remain quiescent under severe drought and rapidly recover full metabolism once water becomes available. Barbacenia graminifolia is a resurrection plant that occurs at high altitudes, typically growing on rock slits, exposed to high irradiance and limited water availability. We analyzed the levels of reactive oxygen species (ROS) and antioxidants, carotenoids and its cleavage products, and stress-related phytohormones in fully hydrated, dehydrated, and rehydrated leaves of B. graminifolia. This species exhibited a precise adjustment of its antioxidant metabolism to desiccation. Our results indicate that this adjustment is associated with enhanced carotenoid and apocarotenoids, α-tocopherol and compounds of ascorbate-glutathione cycle. While α-carotene and lutein increased in dried-leaves suggesting effective protection of the light-harvesting complexes, the decrease in ß-carotene was accompanied of 10.2-fold increase in the content of ß-cyclocitral, an apocarotenoid implicated in the regulation of abiotic stresses, compared to hydrated plants. The principal component analysis showed that dehydrated plants at 30 days formed a separate cluster from both hydrated and dehydrated plants for up to 15 days. This regulation might be part of the protective metabolic strategies employed by this resurrection plant to survive water scarcity in its inhospitable habitat.

3.
Front Genet ; 13: 958641, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36238154

RESUMEN

An overview of the total Arabidopsis thaliana transcriptome, described previously by our research group, pointed some noncoding RNA (ncRNA) as participants in the restoration of hair-root phenotype in A. thaliana rhd6 mutants, leading us to a deeper investigation. A transcriptional gene expression profiling of seedling roots was performed aiming to identify ncRNA responsive to nitric oxide (GSNO) and auxin (IAA), and their involvement in root hair formation in the rhd6 null mutant. We identified 3,631 ncRNAs, including new ones, in A. thaliana and differential expression (DE) analysis between the following: 1) GSNO-treated rhd6 vs. untreated rhd6, 2) IAA-treated rhd6 vs. untreated rhd6, 3) GSNO-treated rhd6 vs. IAA-treated rhd6, and 4) WS-2 vs. untreated rhd6 detected the greatest number of DE genes in GSNO-treated rhd6. We detected hundreds of in silico interactions among ncRNA and protein-coding genes (PCGs), highlighting MIR5658 and MIR171 precursors highly upregulated in GSNO-treated rhd6 and wild type, respectively. Those ncRNA interact with many DE PCGs involved in hormone signaling, cell wall development, transcription factors, and root hair formation, becoming candidate genes in cell wall modulation and restoration of root hair phenotype by GSNO treatment. Our data shed light on how GSNO modulates ncRNA and their PCG targets in A. thaliana root hair formation.

4.
Physiol Plant ; 174(5): e13783, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-36123313

RESUMEN

Barbacenia graminifolia is a Velloziaceae species endemic to the campos rupestres in Serra do Cipó, Minas Gerais state (Brazil). This biome is characterised by high irradiance and limited water conditions. Unlike other resurrection plants, B. graminifolia can maintain a high hydric status (>80%) after 28 days of water suppression before desiccation. We investigated the physiological and metabolic mechanisms associated with structural changes that allow B. graminifolia to maintain hydration under a prolonged water deficit and to recover after desiccation. After 30 days of water deficit, desiccated plants exhibited chlorophyll degradation, a 178.4% and 193.7% increase in total carotenoids and MDA, respectively, and twice the CAT and APX activity compared to hydrated plants. The metabolite profile showed increased amino acids, carbohydrates, saturated fatty acids and benzoic acids during dehydration, while trichloroacetic acid cycle acids were higher in hydrated and rehydrated plants. Anatomical and ultrastructural data corroborated the physiological and metabolic changes and revealed the presence of mucilaginous cells with high water retention capacity. Our data indicated that combined strategies of assimilatory metabolism shutdown, accumulation of compatible solutes and antioxidant compounds, increase in hydrophilic molecules, changes in the composition of membrane lipids and remodelling of cell organelles conditioned the efficiency of B. graminifolia in delaying water loss, tolerating further desiccation and quickly recovering after rehydration. These attributes evidence that this species is well adapted to cope with adverse environmental conditions, mainly directing the metabolism to an efficient antioxidant response and improving its capacity to retain water during the dry season.


Asunto(s)
Antioxidantes , Desecación , Antioxidantes/metabolismo , Ácido Tricloroacético , Agua/metabolismo , Plantas/metabolismo , Clorofila/metabolismo , Carotenoides , Carbohidratos , Lípidos de la Membrana , Ácidos Grasos , Benzoatos , Aminoácidos
5.
Folia Microbiol (Praha) ; 67(6): 873-889, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35729302

RESUMEN

Fructooligosaccharides (FOS) are fructose-based oligosaccharides employed as additives to improve the food's nutritional and technological properties. The rhizosphere of plants that accumulate fructopolysaccharides as inulin has been revealed as a source of filamentous fungi. These fungi can produce FOS either by inulin hydrolysis or by biosynthesis from sucrose, including unusual FOS with enhanced prebiotic properties. Here, we investigated the ability of Fusarium solani and Neocosmospora vasinfecta to produce FOS from different carbon sources. Fusarium solani and N. vasinfecta grew preferentially in inulin instead of sucrose, resulting in the FOS production as the result of endo-inulinase activities. N. vasinfecta was also able to produce the FOS 1-kestose and 6-kestose from sucrose, indicating transfructosylating activity, absent in F. solani. Moreover, the results showed how these carbon sources affected fungal cell wall composition and the expression of genes encoding for ß-1,3-glucan synthase and chitin synthase. Inulin and fructose promoted changes in fungal macroscopic characteristics partially explained by alterations in cell wall composition. However, these alterations were not directly correlated with the expression of genes related to cell wall synthesis. Altogether, the results pointed to the potential of both F. solani and N. vasinfecta to produce FOS at specific profiles.


Asunto(s)
Fusarium , Inulina , Inulina/metabolismo , Oligosacáridos , Fusarium/genética , Fusarium/metabolismo , Fructosa/metabolismo , Sacarosa/metabolismo , Carbono
6.
Plant Physiol Biochem ; 160: 62-72, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33461051

RESUMEN

Epiphytic bromeliads might experience drought after a few hours without water, which is especially critical during early life stages. Consequently, juvenile epiphytic bromeliads probably rely on short-term activation of drought tolerance strategies, although the biochemical processes involved are still poorly understood. In this study, we aimed to evaluate the short-term drought response of juvenile plants of the epiphytic bromeliad Acanthostachys strobilacea (Schult. & Schult. f.) Klotzsch. We hypothesized that short-term drought would induce the accumulation of abscisic acid (ABA) and secondary messengers such as reactive oxygen and nitrogen species (ROS and RNS, respectively) before the activation of defence mechanisms. Three-month-old plants were transferred from well-watered to dry substrates and stress markers were assessed at 0, 2, 5, 10, 24, 48, and 72 h. Drought caused a 27.3% decrease in relative water content compared to the well-watered control at 72 h. A nearly 5-fold increment in the ABA content occurred at 72 h of stress, which was about two days after the first detection of peaks in RNS levels and defence mechanisms activation. Indeed, ascorbate peroxidase (EC 1.11.1.11) activities and proline content increased after 10 h, whereas after 24 h a higher catalase (EC 1.11.1.6) activity and osmotic adjustment occurred. Oxidative stress markers and photochemical efficiency of photosystem II indicated no significant damage induced by drought. We concluded that defence mechanisms activation during early drought in juvenile A. strobilacea might be regulated initially by ABA-independent pathways and RNS, while ABA-induced responses are triggered at subsequent stages of stress.


Asunto(s)
Ácido Abscísico/metabolismo , Bromeliaceae/fisiología , Sequías , Estrés Fisiológico , Antioxidantes/metabolismo , Especies de Nitrógeno Reactivo/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Agua/fisiología
7.
Plant Physiol Biochem ; 145: 205-215, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31707248

RESUMEN

Drought is a major environmental factor that can trigger oxidative stress and affect plant growth and productivity. Previous studies have shown that exogenous nitric oxide (NO) can minimize oxidative stress-related damage through the modulation of antioxidant enzyme activity. Fructan accumulation also has an important role in drought tolerance, since these carbohydrates participate in osmoregulation, membrane protection and oxidant scavenging. Currently, there are few studies investigating NO-regulated fructan metabolism in response to abiotic stresses. In the present study, we sought to determine if treating plants of Lolium perenne with S-nitrosoglutathione (GSNO), a NO donor, improved drought tolerance. Two-month-old plants received water (control), GSNO and reduced glutathione (GSH) as foliar spray treatments and were then maintained under drought or well-watered conditions for 23 days. At the end of drought period, we evaluated growth, pigment content and antioxidant and fructan metabolisms. None of these conditions influenced dry mass accumulation, but the leaves of plants treated with GSNO exhibited a slight increase in pigment content under drought. GSNO treatment also induced 1-SST activity, which was associated with a 3-fold increase in fructan content. GSNO-treated plants presented higher GR activity and, consequently, increased GSH levels. L. perenne cv. AberAvon was relatively tolerant to the water stress condition employed herein, maintaining ROS homeostasis and mitigating oxidative stress, possibly due to fructan, ascorbate and glutathione pools.


Asunto(s)
Antioxidantes , Sequías , Fructanos , Lolium , Óxido Nítrico , Antioxidantes/metabolismo , Fructanos/metabolismo , Lolium/efectos de los fármacos , Lolium/fisiología , Óxido Nítrico/farmacología , Hojas de la Planta/efectos de los fármacos
8.
Planta ; 250(1): 319-332, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-31030328

RESUMEN

MAIN CONCLUSION: Depending on the N source and plant ontogenetic state, the epiphytic tank-forming bromeliad Vriesea gigantea can modulate aquaporin expression to maximize the absorption of the most available nitrogen source. Epiphytic bromeliads frequently present a structure formed by the overlapping of leaf bases where water and nutrients can be accumulated and absorbed, called tank. However, this structure is not present during the juvenile ontogenetic phase, leading to differences in nutrient acquisition strategies. Recent studies have shown a high capacity of the bromeliad Vriesea gigantea, an epiphytic tank-forming bromeliad, to absorb urea by their leaves. Since plant aquaporins can facilitate the diffusion of urea through the membranes, we cloned three foliar aquaporin genes, VgPIP1;1, VgPIP1;2 and VgTIP2;1 from V. gigantea plants. Through functional studies, we observed that besides water, VgTIP2;1 was capable of transporting urea while VgPIP1;2 may facilitate ammonium/ammonia diffusion. Moreover, aiming at identifying urea and ammonium-induced changes in aquaporin expression in leaves of juvenile and adult-tank plants, we showed that VgPIP1;1 and VgPIP1;2 transcripts were up-regulated in response to either urea or ammonium only in juvenile plants, while VgTIP2;1 was up-regulated in response to urea only in adult-tank plants. Thereby, an ontogenetic shift from juvenile to adult-tank-forming-plant appears to occur with metabolic changes regarding nitrogen metabolism regulation. Investigating urea metabolism in wild species that naturally cope with organic N sources, such as V. gigantea, may provide the knowledge to modify nitrogen use efficiency of crop plants.


Asunto(s)
Acuaporinas/metabolismo , Bromeliaceae/metabolismo , Nitrógeno/metabolismo , Urea/metabolismo , Acuaporinas/genética , Bromeliaceae/genética , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Agua/metabolismo
10.
J Exp Bot ; 69(8): 1993-2003, 2018 04 09.
Artículo en Inglés | MEDLINE | ID: mdl-29462338

RESUMEN

Guzmania monostachia (Bromeliaceae) is a tropical epiphyte capable of up-regulating crassulacean acid metabolism (CAM) in its photosynthetic tissues in response to changing nutrient and water availability. Previous studies have shown that under drought there is a gradient of increasing CAM expression from the basal (youngest) to the apical (oldest) portion of the leaves, and additionally that nitrogen deficiency can further increase CAM intensity in the leaf apex of this bromeliad. The present study investigated the inter-relationships between nitrogen source (nitrate and/or ammonium) and water deficit in regulating CAM expression in G. monostachia leaves. The highest CAM activity was observed under ammonium nutrition in combination with water deficit. This was associated with enhanced activity of the key enzyme phosphoenolpyruvate carboxylase, elevated rates of ATP- and PPi-dependent proton transport at the vacuolar membrane in the presence of malate, and increased transcript levels of the vacuolar malate channel-encoding gene, ALMT. Water deficit was consistently associated with higher levels of total soluble sugars, which were maximal under ammonium nutrition, as were the activities of several antioxidant enzymes (superoxide dismutase, catalase, ascorbate peroxidase, and glutathione reductase). Thus, ammonium nutrition, whilst associated with the highest degree of CAM induction in G. monostachia, also mitigates the effects of water deficit by osmotic adjustment and can limit oxidative damage in the leaves of this bromeliad under conditions that may be typical of its epiphytic habitat.


Asunto(s)
Compuestos de Amonio/metabolismo , Antioxidantes/metabolismo , Bromeliaceae/metabolismo , Malatos/metabolismo , Fotosíntesis , Ascorbato Peroxidasas/genética , Ascorbato Peroxidasas/metabolismo , Transporte Biológico , Bromeliaceae/genética , Catalasa/genética , Catalasa/metabolismo , Sequías , Regulación de la Expresión Génica de las Plantas , Glutatión Reductasa/genética , Glutatión Reductasa/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Superóxido Dismutasa/genética , Superóxido Dismutasa/metabolismo , Agua/metabolismo
11.
PLoS One ; 13(1): e0191081, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29324804

RESUMEN

Expansins refer to a family of closely related non-enzymatic proteins found in the plant cell wall that are involved in the cell wall loosening. In addition, expansins appear to be involved in different physiological and environmental responses in plants such as leaf and stem initiation and growth, stomata opening and closing, reproduction, ripening and stress tolerance. Sugarcane (Saccharum spp.) is one of the main crops grown worldwide. Lignocellulosic biomass from sugarcane is one of the most promising raw materials for the ethanol industry. However, the efficient use of lignocellulosic biomass requires the optimization of several steps, including the access of some enzymes to the hemicellulosic matrix. The addition of expansins in an enzymatic cocktail or their genetic manipulation could drastically improve the saccharification process of feedstock biomass by weakening the hydrogen bonds between polysaccharides present in plant cell walls. In this study, the expansin gene family in sugarcane was identified and characterized by in silico analysis. Ninety two putative expansins in sugarcane (SacEXPs) were categorized in three subfamilies after phylogenetic analysis. The expression profile of some expansin genes in leaves of sugarcane in different developmental stages was also investigated. This study intended to provide suitable expansin targets for genetic manipulation of sugarcane aiming at biomass and yield improvement.


Asunto(s)
Perfilación de la Expresión Génica , Genes de Plantas , Saccharum/genética , Biomasa , Enlace de Hidrógeno
12.
New Phytol ; 218(1): 81-93, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29315591

RESUMEN

Feruloylation of arabinoxylan (AX) in grass cell walls is a key determinant of recalcitrance to enzyme attack, making it a target for improvement of grass crops, and of interest in grass evolution. Definitive evidence on the genes responsible is lacking so we studied a candidate gene that we identified within the BAHD acyl-CoA transferase family. We used RNA interference (RNAi) silencing of orthologs in the model grasses Setaria viridis (SvBAHD01) and Brachypodium distachyon (BdBAHD01) and determined effects on AX feruloylation. Silencing of SvBAHD01 in Setaria resulted in a c. 60% decrease in AX feruloylation in stems consistently across four generations. Silencing of BdBAHD01 in Brachypodium stems decreased feruloylation much less, possibly due to higher expression of functionally redundant genes. Setaria SvBAHD01 RNAi plants showed: no decrease in total lignin, approximately doubled arabinose acylated by p-coumarate, changes in two-dimensional NMR spectra of unfractionated cell walls consistent with biochemical estimates, no effect on total biomass production and an increase in biomass saccharification efficiency of 40-60%. We provide the first strong evidence for a key role of the BAHD01 gene in AX feruloylation and demonstrate that it is a promising target for improvement of grass crops for biofuel, biorefining and animal nutrition applications.


Asunto(s)
Biomasa , Pared Celular/metabolismo , Coenzima A Transferasas/genética , Ácidos Cumáricos/metabolismo , Genes de Plantas , Setaria (Planta)/enzimología , Setaria (Planta)/genética , Supresión Genética , Ácidos/metabolismo , Brachypodium/genética , Metabolismo de los Hidratos de Carbono , Coenzima A Transferasas/metabolismo , Regulación de la Expresión Génica de las Plantas , Silenciador del Gen , Hidrólisis , Lignina/metabolismo , Espectroscopía de Resonancia Magnética , Tamaño de los Órganos , Filogenia , Tallos de la Planta/metabolismo , Plantas Modificadas Genéticamente , Semillas/anatomía & histología , Semillas/crecimiento & desarrollo , Transcriptoma/genética , Xilanos/metabolismo
14.
New Phytol ; 213(4): 1771-1786, 2017 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-27880005

RESUMEN

Nitric oxide (NO) exerts pleiotropic effects on plant development; however, its involvement in cell wall modification during root hair formation (RHF) has not yet been addressed. Here, mutants of Arabidopsis thaliana with altered root hair phenotypes were used to assess the involvement of S-nitrosoglutathione (GSNO), the primary NO source, in cell wall dynamics and gene expression in roots induced to form hairs. GSNO and auxin restored the root hair phenotype of the hairless root hair defective 6 (rhd6) mutant. A positive correlation was observed between increased NO production and RHF induced by auxin in rhd6 and transparent testa glabra (ttg) mutants. Deposition of an epitope within rhamnogalacturonan-I recognized by the CCRC-M2 antibody was delayed in root hair cells (trichoblasts) compared with nonhair cells (atrichoblasts). GSNO, but not auxin, restored the wild-type root glycome and transcriptome profiles in rhd6, modulating the expression of a large number of genes related to cell wall composition and metabolism, as well as those encoding ribosomal proteins, DNA and histone-modifying enzymes and proteins involved in post-translational modification. Our results demonstrate that NO plays a key role in cell wall remodelling in trichoblasts and suggest that it also participates in chromatin modification in root cells of A. thaliana.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Pared Celular/metabolismo , Mutación/genética , Raíces de Plantas/genética , S-Nitrosoglutatión/farmacología , Transcripción Genética/efectos de los fármacos , Arabidopsis/efectos de los fármacos , Proteínas de Arabidopsis/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Pared Celular/efectos de los fármacos , Epítopos/metabolismo , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Metaboloma/efectos de los fármacos , Modelos Biológicos , Óxido Nítrico/metabolismo , Pectinas/metabolismo , Fenotipo , Epidermis de la Planta/citología , Raíces de Plantas/efectos de los fármacos , Transcriptoma/efectos de los fármacos , Transcriptoma/genética
15.
Front Plant Sci ; 6: 681, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26442003

RESUMEN

Chrysolaena obovata (Less.) Dematt., previously named Vernonia herbacea, is an Asteraceae native to the Cerrado which accumulates about 80% of the rhizophore dry mass as inulin-type fructans. Considering its high inulin production and the wide application of fructans, a protocol for C. obovata in vitro culture was recently established. Carbohydrates are essential for in vitro growth and development of plants and can also act as signaling molecules involved in cellular adjustments and metabolic regulation. This work aimed to evaluate the effect of different sources of carbohydrate on fructan metabolism in plants grown in vitro. For this purpose, C. obovata plants cultivated in vitro were submitted to carbon deprivation and transferred to MS medium supplemented with sucrose, glucose or fructose. Following, their fructan composition and activity and expression of genes encoding enzymes for fructan synthesis (1-SST and 1-FFT) and degradation (1-FEH) were evaluated. For qRT-PCR analysis partial cDNA sequences corresponding to two different C. obovata genes, 1-SST and 1-FFT, were isolated. As expected, C. obovata sequences showed highest sequence identity to other Asteraceae 1-SST and 1-FFT, than to Poaceae related proteins. A carbon deficit treatment stimulated the transcription of the gene 1-FEH and inhibited 1-SST and 1-FFT and carbohydrate supplementation promoted reversal of the expression profile of these genes. With the exception of 1-FFT, a positive correlation between enzyme activity and gene expression was observed. The overall results indicate that sucrose, fructose and glucose act similarly on fructan metabolism and that 1-FEH and 1-SST are transcriptionally regulated by sugar in this species. Cultivation of plants in increasing sucrose concentrations stimulated synthesis and inhibited fructan mobilization, and induced a distinct pattern of enzyme activity for 1-SST and 1-FFT, indicating the existence of a mechanism for differential regulation between them.

16.
Ann Bot ; 115(7): 1163-75, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25921788

RESUMEN

BACKGROUND AND AIMS: Chrysolaena obovata, an Asteraceae of the Brazilian Cerrado, presents seasonal growth, marked by senescence of aerial organs in winter and subsequent regrowth at the end of this season. The underground reserve organs, the rhizophores, accumulate inulin-type fructans, which are known to confer tolerance to drought and low temperature. Fructans and fructan-metabolizing enzymes show a characteristic spatial and temporal distribution in the rhizophores during the developmental cycle. Previous studies have shown correlations between abscisic acid (ABA) or indole acetic acid (IAA), fructans, dormancy and tolerance to drought and cold, but the signalling mechanism for the beginning of dormancy and sprouting in this species is still unknown. METHODS: Adult plants were sampled from the field across phenological phases including dormancy, sprouting and vegetative growth. Endogenous concentrations of ABA and IAA were determined by GC-MS-SIM (gas chromatography-mass spectrometry-selected ion monitoring), and measurements were made of fructan content and composition, and enzyme activities. The relative expression of corresponding genes during dormancy and sprouting were also determined. KEY RESULTS: Plants showed a high fructan 1-exohydrolase (EC 3.2.1.153) activity and expression during sprouting in proximal segments of the rhizophores, indicating mobilization of fructan reserves, when ABA concentrations were relatively low and precipitation and temperature were at their minimum values. Concomitantly, higher IAA concentrations were consistent with the role of this regulator in promoting cell elongation and plant growth. With high rates of precipitation and high temperatures in summer, the fructan-synthesizing enzyme sucrose:sucrose 1-fructosyltransferase (EC 2.4.1.99) showed higher activity and expression in distal segments of the rhizophores, which decreased over the course of the vegetative stage when ABA concentrations were higher, possibly signalling the entry into dormancy. CONCLUSIONS: The results show that fructan metabolism correlates well with endogenous hormone concentrations and environmental changes, suggesting that the co-ordinated action of carbohydrate metabolism and hormone synthesis enables C. obovata to survive unfavourable field conditions. Endogenous hormone concentrations seem to be related to regulation of fructan metabolism and to the transition between phenophases, signalling for energy storage, reserve mobilization and accumulation of oligosaccharides as osmolytes.


Asunto(s)
Ácido Abscísico/metabolismo , Asteraceae/metabolismo , Fructanos/metabolismo , Ácidos Indolacéticos/metabolismo , Asteraceae/crecimiento & desarrollo , Brasil , Cromatografía de Gases y Espectrometría de Masas , Estaciones del Año
17.
Physiol Plant ; 136(1): 86-93, 2009 May.
Artículo en Inglés | MEDLINE | ID: mdl-19508368

RESUMEN

Urea is an important nitrogen source for some bromeliad species, and in nature it is derived from the excretion of amphibians, which visit or live inside the tank water. Its assimilation is dependent on the hydrolysis by urease (EC: 3.5.1.5), and although this enzyme has been extensively studied to date, little information is available about its cellular location. In higher plants, this enzyme is considered to be present in the cytoplasm. However, there is evidence that urease is secreted by the bromeliad Vriesea gigantea, implying that this enzyme is at least temporarily located in the plasmatic membrane and cell wall. In this article, urease activity was measured in different cell fractions using leaf tissues of two bromeliad species: the tank bromeliad V. gigantea and the terrestrial bromeliad Ananas comosus (L.) Merr. In both species, urease was present in the cell wall and membrane fractions, besides the cytoplasm. Moreover, a considerable difference was observed between the species: while V. gigantea had 40% of the urease activity detected in the membranes and cell wall fractions, less than 20% were found in the same fractions in A. comosus. The high proportion of urease found in cell wall and membranes in V. gigantea was also investigated by cytochemical detection and immunoreaction assay. Both approaches confirmed the enzymatic assay. We suggest this physiological characteristic allows tank bromeliads to survive in a nitrogen-limited environment, utilizing urea rapidly and efficiently and competing successfully for this nitrogen source against microorganisms that live in the tank water.


Asunto(s)
Bromeliaceae/enzimología , Membrana Celular/enzimología , Pared Celular/enzimología , Hojas de la Planta/enzimología , Ureasa/metabolismo
18.
Plant Cell Environ ; 31(8): 1116-27, 2008 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-18433443

RESUMEN

Because of the economical relevance of sugarcane and its high potential as a source of biofuel, it is important to understand how this crop will respond to the foreseen increase in atmospheric [CO(2)]. The effects of increased [CO(2)] on photosynthesis, development and carbohydrate metabolism were studied in sugarcane (Saccharum ssp.). Plants were grown at ambient (approximately 370 ppm) and elevated (approximately 720 ppm) [CO(2)] during 50 weeks in open-top chambers. The plants grown under elevated CO(2) showed, at the end of such period, an increase of about 30% in photosynthesis and 17% in height, and accumulated 40% more biomass in comparison with the plants grown at ambient [CO(2)]. These plants also had lower stomatal conductance and transpiration rates (-37 and -32%, respectively), and higher water-use efficiency (c.a. 62%). cDNA microarray analyses revealed a differential expression of 35 genes on the leaves (14 repressed and 22 induced) by elevated CO(2). The latter are mainly related to photosynthesis and development. Industrial productivity analysis showed an increase of about 29% in sucrose content. These data suggest that sugarcane crops increase productivity in higher [CO(2)], and that this might be related, as previously observed for maize and sorghum, to transient drought stress.


Asunto(s)
Biomasa , Dióxido de Carbono/farmacología , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Fotosíntesis/efectos de los fármacos , Saccharum/efectos de los fármacos , Saccharum/genética , Celulosa/metabolismo , Gases/metabolismo , Humedad , Luz , Lignina/metabolismo , Fotosíntesis/efectos de la radiación , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/genética , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/efectos de la radiación , Estomas de Plantas/efectos de los fármacos , Estomas de Plantas/efectos de la radiación , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Saccharum/crecimiento & desarrollo , Saccharum/efectos de la radiación , Sacarosa/metabolismo , Temperatura
19.
Plant Cell Physiol ; 44(12): 1384-95, 2003 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-14701934

RESUMEN

In maize (Zea mays) roots, xylem water transfer supported by root pressure occurs during the day and is less important at night. Diurnal modifications of osmotic pressure gradient between medium and xylem could not explain the oscillation of water flux in young maize roots during the day-night cycle. We observed a high turgor pressure of root cortical cells associated with a high flux. In maize roots, ZmPIP transcripts oscillate during the day-night cycle exhibiting some characteristics of genes regulated by a circadian mechanism. The PIP protein level profile is different from the mRNA pattern. Moreover, ZmPIP1 and ZmPIP2 protein levels are differentially regulated during the light and dark period and in response to continuous darkness suggesting different roles for both classes of PIP. Finally, our results suggest that aquaporins from ZmPIP2 subgroup may contribute to root water transfer by cellular pathway that occurs during the light and the dark period of the day-night cycle.


Asunto(s)
Acuaporinas/metabolismo , Ritmo Circadiano/fisiología , Proteínas de Plantas/genética , Raíces de Plantas/fisiología , Agua/fisiología , Zea mays/fisiología , Secuencia de Aminoácidos , Acuaporinas/genética , Acuaporinas/efectos de la radiación , Transporte Biológico/fisiología , Transporte Biológico/efectos de la radiación , Ritmo Circadiano/efectos de la radiación , Oscuridad , Regulación de la Expresión Génica de las Plantas/efectos de la radiación , Luz , Datos de Secuencia Molecular , Presión Osmótica/efectos de la radiación , Proteínas de Plantas/metabolismo , Proteínas de Plantas/efectos de la radiación , Raíces de Plantas/genética , Homología de Secuencia de Aminoácido , Zea mays/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...