Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
RNA Biol ; 18(sup1): 182-197, 2021 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-34530680

RESUMEN

Biochemical studies of the human ribosome synthesis pathway have been hindered by technical difficulties in obtaining intact preribosomal complexes from internal regions of the nucleolus. Here we provide a detailed description of an extraction method that enables efficient detection, isolation, and characterization of nucleolar preribosomes containing large pre-rRNA species. The three-step Preribosome Sequential Extraction (PSE) protocol preserves the integrity of early preribosomal complexes and yields preparations amenable to biochemical analyses from low amounts of starting material. We validate this procedure through the detection of specific trans-acting factors and pre-rRNAs in the extracted preribosomes using affinity matrix pull-downs and sedimentation assays. In addition, we describe the application of the PSE method for monitoring cellular levels of ribosome-free 5S RNP complexes as an indicator of ribosome biogenesis stress. Our optimized experimental procedures will facilitate studies of human ribosome biogenesis in normal, mutant and stressed-cell scenarios, including the characterization of candidate ribosome biogenesis factors, preribosome interactors under specific physiological conditions or effects of drugs on ribosome maturation.


Asunto(s)
Nucléolo Celular/metabolismo , Precursores del ARN/metabolismo , ARN Ribosómico/metabolismo , Proteínas Ribosómicas/aislamiento & purificación , Proteínas Ribosómicas/metabolismo , Ribosomas/metabolismo , Nucléolo Celular/genética , Células HCT116 , Células HeLa , Humanos , Precursores del ARN/genética , ARN Ribosómico/genética , Proteínas Ribosómicas/genética , Ribosomas/genética
2.
Nat Commun ; 11(1): 156, 2020 01 09.
Artículo en Inglés | MEDLINE | ID: mdl-31919354

RESUMEN

Technical problems intrinsic to the purification of preribosome intermediates have limited our understanding of ribosome biosynthesis in humans. Addressing this issue is important given the implication of this biological process in human disease. Here we report a preribosome purification and tagging strategy that overcomes some of the existing technical difficulties. Using these tools, we find that the pre-40S precursors go through two distinct maturation phases inside the nucleolus and follow a regulatory step that precedes late maturation in the cytoplasm. This regulatory step entails the intertwined actions of both PARN (a metazoan-specific ribonuclease) and RRP12 (a phylogenetically conserved 40S biogenesis factor that has acquired additional functional features in higher eukaryotes). Together, these results demonstrate the usefulness of this purification method for the dissection of ribosome biogenesis in human cells. They also identify distinct maturation stages and metazoan-specific regulatory mechanisms involved in the generation of the human 40S ribosomal subunit.


Asunto(s)
Nucléolo Celular/metabolismo , Proteínas Ribosómicas/biosíntesis , Subunidades Ribosómicas Pequeñas de Eucariotas/metabolismo , Línea Celular Tumoral , Exorribonucleasas/metabolismo , Células HCT116 , Células HeLa , Humanos , Proteínas Nucleares/metabolismo , Precursores del ARN/biosíntesis , Precursores del ARN/metabolismo , ARN Ribosómico/biosíntesis , Subunidades Ribosómicas Pequeñas de Eucariotas/genética , Coloración y Etiquetado/métodos
3.
RNA ; 25(11): 1561-1575, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31413149

RESUMEN

In Saccharomyces cerevisiae, more than 250 trans-acting factors are involved in the maturation of 40S and 60S ribosomal subunits. The expression of most of these factors is transcriptionally coregulated to ensure correct ribosome production under a wide variety of environmental and intracellular conditions. Here, we identified the essential nucleolar Pol5 protein as a novel trans-acting factor required for the synthesis of 60S ribosomal subunits. Pol5 weakly and/or transiently associates with early to medium pre-60S ribosomal particles. Depletion of and temperature-sensitive mutations in Pol5 result in a deficiency of 60S ribosomal subunits and accumulation of half-mer polysomes. Both processing of 27SB pre-rRNA to mature 25S rRNA and release of pre-60S ribosomal particles from the nucle(ol)us to the cytoplasm are impaired in the Pol5-depleted strain. Moreover, we identified the genes encoding ribosomal proteins uL23 and eL27A as multicopy suppressors of the slow growth of a temperature-sensitive pol5 mutant. These results suggest that Pol5 could function in ensuring the correct folding of 25S rRNA domain III; thus, favoring the correct assembly of these two ribosomal proteins at their respective binding sites into medium pre-60S ribosomal particles. Pol5 is homologous to the human tumor suppressor Myb-binding protein 1A (MYBBP1A). However, expression of MYBBP1A failed to complement the lethal phenotype of a pol5 null mutant strain though interfered with 60S ribosomal subunit biogenesis.


Asunto(s)
ADN Polimerasa Dirigida por ADN/metabolismo , Subunidades Ribosómicas Grandes de Eucariotas/metabolismo , Ribosomas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Núcleo Celular/metabolismo , Citoplasma/metabolismo , Procesamiento Postranscripcional del ARN
4.
RNA ; 23(9): 1432-1443, 2017 09.
Artículo en Inglés | MEDLINE | ID: mdl-28588079

RESUMEN

Saccharomyces cerevisiae contains one nucleolus that remains intact in the mother-cell side of the nucleus throughout most of mitosis. Based on this, it is assumed that the bulk of ribosome production during cell division occurs in the mother cell. Here, we show that the ribosome synthesis machinery localizes not only in the nucleolus but also at a center that is present in the bud side of the nucleus after the initiation of mitosis. This center can be visualized by live microscopy as a punctate body located in close proximity to the nuclear envelope and opposite to the nucleolus. It contains ribosomal DNA (rDNA) and precursors of both 40S and 60S ribosomal subunits. Proteins that actively participate in ribosome synthesis, but not functionally defective variants, accumulate in that site. The formation of this body occurs in the metaphase-to-anaphase transition when discrete regions of rDNA occasionally exit the nucleolus and move into the bud. Collectively, our data unveil the existence of a previously unknown mechanism for preribosome accumulation at the nuclear periphery in budding yeast. We propose that this might be a strategy to expedite the delivery of ribosomes to the growing bud.


Asunto(s)
Anafase , Nucléolo Celular/genética , Nucléolo Celular/metabolismo , Metafase , Saccharomycetales/genética , Saccharomycetales/metabolismo , Transporte Biológico , Puntos de Control del Ciclo Celular/genética , ADN Ribosómico/genética , ADN Ribosómico/metabolismo , Expresión Génica , Genes Reporteros , Espacio Intracelular/metabolismo , ARN Ribosómico/genética , ARN Ribosómico/metabolismo , Ribosomas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...