Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Mol Pharmacol ; 105(4): 272-285, 2024 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-38351270

RESUMEN

The signal transduction protein, regulator of G protein signaling 4 (RGS4), plays a prominent role in physiologic and pharmacological responses by controlling multiple intracellular pathways. Our earlier work identified the dynamic but distinct roles of RGS4 in the efficacy of monoamine-targeting versus fast-acting antidepressants. Using a modified chronic variable stress (CVS) paradigm in mice, we demonstrate that stress-induced behavioral abnormalities are associated with the downregulation of RGS4 in the medial prefrontal cortex (mPFC). Knockout of RGS4 (RGS4KO) increases susceptibility to CVS, as mutant mice develop behavioral abnormalities as early as 2 weeks after CVS resting-state functional magnetic resonance imaging I (rs-fMRI) experiments indicate that stress susceptibility in RGS4KO mice is associated with changes in connectivity between the mediodorsal thalamus (MD-THL) and the mPFC. Notably, RGS4KO also paradoxically enhances the antidepressant efficacy of ketamine in the CVS paradigm. RNA-sequencing analysis of naive and CVS samples obtained from mPFC reveals that RGS4KO triggers unique gene expression signatures and affects several intracellular pathways associated with human major depressive disorder. Our analysis suggests that ketamine treatment in the RGS4KO group triggers changes in pathways implicated in synaptic activity and responses to stress, including pathways associated with axonal guidance and myelination. Overall, we show that reducing RGS4 activity triggers unique gene expression adaptations that contribute to chronic stress disorders and that RGS4 is a negative modulator of ketamine actions. SIGNIFICANCE STATEMENT: Chronic stress promotes robust maladaptation in the brain, but the exact intracellular pathways contributing to stress vulnerability and mood disorders have not been thoroughly investigated. In this study, the authors used murine models of chronic stress and multiple methodologies to demonstrate the critical role of the signal transduction modulator regulator of G protein signaling 4 in the medial prefrontal cortex in vulnerability to chronic stress and the efficacy of the fast-acting antidepressant ketamine.


Asunto(s)
Trastorno Depresivo Mayor , Ketamina , Proteínas RGS , Ratones , Humanos , Animales , Ketamina/farmacología , Transcriptoma , Trastorno Depresivo Mayor/tratamiento farmacológico , Trastorno Depresivo Mayor/metabolismo , Ratones Noqueados , Proteínas RGS/genética , Proteínas RGS/metabolismo , Antidepresivos/farmacología , Antidepresivos/metabolismo , Corteza Prefrontal/metabolismo , Perfilación de la Expresión Génica , Proteínas de Unión al GTP/metabolismo
3.
EMBO Rep ; 24(8): e57344, 2023 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-37314252

RESUMEN

The counterregulatory response to hypoglycemia (CRR), which ensures a sufficient glucose supply to the brain, is an essential survival function. It is orchestrated by incompletely characterized glucose-sensing neurons, which trigger a coordinated autonomous and hormonal response that restores normoglycemia. Here, we investigate the role of hypothalamic Tmem117, identified in a genetic screen as a regulator of CRR. We show that Tmem117 is expressed in vasopressin magnocellular neurons of the hypothalamus. Tmem117 inactivation in these neurons increases hypoglycemia-induced vasopressin secretion leading to higher glucagon secretion in male mice, and this effect is estrus cycle phase dependent in female mice. Ex vivo electrophysiological analysis, in situ hybridization, and in vivo calcium imaging reveal that Tmem117 inactivation does not affect the glucose-sensing properties of vasopressin neurons but increases ER stress, ROS production, and intracellular calcium levels accompanied by increased vasopressin production and secretion. Thus, Tmem117 in vasopressin neurons is a physiological regulator of glucagon secretion, which highlights the role of these neurons in the coordinated response to hypoglycemia.


Asunto(s)
Glucagón , Hipoglucemia , Ratones , Masculino , Femenino , Animales , Glucagón/efectos adversos , Calcio , Hipoglucemia/genética , Hipoglucemia/inducido químicamente , Vasopresinas/efectos adversos , Glucosa , Neuronas/fisiología , Glucemia , Insulina
4.
Nat Neurosci ; 26(7): 1229-1244, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37291337

RESUMEN

The development of physical dependence and addiction disorders due to misuse of opioid analgesics is a major concern with pain therapeutics. We developed a mouse model of oxycodone exposure and subsequent withdrawal in the presence or absence of chronic neuropathic pain. Oxycodone withdrawal alone triggered robust gene expression adaptations in the nucleus accumbens, medial prefrontal cortex and ventral tegmental area, with numerous genes and pathways selectively affected by oxycodone withdrawal in mice with peripheral nerve injury. Pathway analysis predicted that histone deacetylase (HDAC) 1 is a top upstream regulator in opioid withdrawal in nucleus accumbens and medial prefrontal cortex. The novel HDAC1/HDAC2 inhibitor, Regenacy Brain Class I HDAC Inhibitor (RBC1HI), attenuated behavioral manifestations of oxycodone withdrawal, especially in mice with neuropathic pain. These findings suggest that inhibition of HDAC1/HDAC2 may provide an avenue for patients with chronic pain who are dependent on opioids to transition to non-opioid analgesics.


Asunto(s)
Neuralgia , Traumatismos de los Nervios Periféricos , Ratones , Animales , Oxicodona/farmacología , Narcóticos , Histona Desacetilasa 1/metabolismo , Recompensa , Analgésicos Opioides/farmacología , Histona Desacetilasa 2/metabolismo
5.
Sci Adv ; 9(2): eade2828, 2023 01 13.
Artículo en Inglés | MEDLINE | ID: mdl-36638184

RESUMEN

Nonsense-mediated messenger RNA (mRNA) decay (NMD) has been intensively studied as a surveillance pathway that degrades erroneous transcripts arising from mutations or RNA processing errors. While additional roles in physiological control of mRNA stability have emerged, possible functions in mammalian physiology in vivo remain unclear. Here, we created a conditional mouse allele that allows converting the NMD effector nuclease SMG6 from wild-type to nuclease domain-mutant protein. We find that NMD down-regulation affects the function of the circadian clock, a system known to require rapid mRNA turnover. Specifically, we uncover strong lengthening of free-running circadian periods for liver and fibroblast clocks and direct NMD regulation of Cry2 mRNA, encoding a key transcriptional repressor within the rhythm-generating feedback loop. Transcriptome-wide changes in daily mRNA accumulation patterns in the entrained liver, as well as an altered response to food entrainment, expand the known scope of NMD regulation in mammalian gene expression and physiology.


Asunto(s)
Relojes Circadianos , Degradación de ARNm Mediada por Codón sin Sentido , Animales , Ratones , Relojes Circadianos/genética , Codón sin Sentido/genética , Procesamiento Postranscripcional del ARN , ARN Mensajero/genética , ARN Mensajero/metabolismo , Factores de Transcripción/metabolismo
6.
J Comp Neurol ; 530(11): 1773-1949, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35303367

RESUMEN

The thalamic paraventricular nucleus (PVT) is a structure highly interconnected with several nuclei ranging from forebrain to hypothalamus and brainstem. Numerous rodent studies have examined afferent and efferent connections of the PVT and their contribution to behavior, revealing its important role in the integration of arousal cues. However, the majority of these studies used a region-oriented approach, without considering the neuronal subtype diversity of the nucleus. In the present study, we provide the anatomical and transcriptomic characterization of a subpopulation of PVT neurons molecularly defined by the expression of glucokinase (Gck). Combining a genetically modified mouse model with viral tracing approaches, we mapped both the anterograde and the retrograde projections of Gck-positive neurons of the anterior PVT (GckaPVT ). Our results demonstrated that GckaPVT neurons innervate several nuclei throughout the brain axis. The strongest connections are with forebrain areas associated with reward and stress and with hypothalamic structures involved in energy balance and feeding regulation. Furthermore, transcriptomic analysis of the Gck-expressing neurons revealed that they are enriched in receptors for hypothalamic-derived neuropeptides, adhesion molecules, and obesity and diabetes susceptibility transcription factors. Using retrograde labeling combined with immunohistochemistry and in situ hybridization, we identify that GckaPVT neurons receive direct inputs from well-defined hypothalamic populations, including arginine-vasopressin-, melanin-concentrating hormone-, orexin-, and proopiomelanocortin-expressing neurons. This detailed anatomical and transcriptomic characterization of GckaPVT neurons provides a basis for functional studies of the integration of homeostatic and hedonic aspects of energy homeostasis, and for deciphering the potential role of these neurons in obesity and diabetes development.


Asunto(s)
Glucoquinasa , Núcleos Talámicos de la Línea Media , Animales , Glucoquinasa/genética , Glucoquinasa/metabolismo , Ratones , Núcleos Talámicos de la Línea Media/metabolismo , Neuronas/metabolismo , Obesidad/metabolismo , Núcleo Hipotalámico Paraventricular/metabolismo , Tálamo/metabolismo
7.
iScience ; 24(10): 103122, 2021 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-34622169

RESUMEN

The paraventricular nucleus of the thalamus (PVT) controls goal-oriented behavior through its connections to the nucleus accumbens (NAc). We previously characterized Glut2aPVT neurons that are activated by hypoglycemia, and which increase sucrose seeking behavior through their glutamatergic projections to the NAc. Here, we identified glucokinase (Gck)-expressing neurons of the PVT (GckaPVT) and generated a mouse line expressing the Cre recombinase from the glucokinase locus (Gck Cre/+ mice). Ex vivo calcium imaging and whole-cell patch clamp recordings revealed that GckaPVT neurons that project to the NAc were mostly activated by hyperglycemia. Their chemogenetic inhibition or optogenetic stimulation, respectively, enhanced food intake or decreased sucrose-seeking behavior. Collectively, our results describe a neuronal population of Gck-expressing neurons in the PVT, which has opposite glucose sensing properties and control over feeding behavior than the previously characterized Glut2aPVT neurons. This study allows a better understanding of the complex regulation of feeding behavior by the PVT.

8.
J Neurosci ; 39(42): 8291-8304, 2019 10 16.
Artículo en Inglés | MEDLINE | ID: mdl-31308097

RESUMEN

Regulator of G-protein signaling 4 (RGS4) is a potent modulator of G-protein-coupled receptor signal transduction that is expressed throughout the pain matrix. Here, we use genetic mouse models to demonstrate a role of RGS4 in the maintenance of chronic pain states in male and female mice. Using paradigms of peripheral inflammation and nerve injury, we show that the prevention of RGS4 action leads to recovery from mechanical and cold allodynia and increases the motivation for wheel running. Similarly, RGS4KO eliminates the duration of nocifensive behavior in the second phase of the formalin assay. Using the Complete Freud's Adjuvant (CFA) model of hindpaw inflammation we also demonstrate that downregulation of RGS4 in the adult ventral posterolateral thalamic nuclei promotes recovery from mechanical and cold allodynia. RNA sequencing analysis of thalamus (THL) from RGS4WT and RGS4KO mice points to many signal transduction modulators and transcription factors that are uniquely regulated in CFA-treated RGS4WT cohorts. Ingenuity pathway analysis suggests that several components of glutamatergic signaling are differentially affected by CFA treatment between RGS4WT and RGS4KO groups. Notably, Western blot analysis shows increased expression of metabotropic glutamate receptor 2 in THL synaptosomes of RGS4KO mice at time points at which they recover from mechanical allodynia. Overall, our study provides information on a novel intracellular pathway that contributes to the maintenance of chronic pain states and points to RGS4 as a potential therapeutic target.SIGNIFICANCE STATEMENT There is an imminent need for safe and efficient chronic pain medications. Regulator of G-protein signaling 4 (RGS4) is a multifunctional signal transduction protein, widely expressed in the pain matrix. Here, we demonstrate that RGS4 plays a prominent role in the maintenance of chronic pain symptoms in male and female mice. Using genetically modified mice, we show a dynamic role of RGS4 in recovery from symptoms of sensory hypersensitivity deriving from hindpaw inflammation or hindlimb nerve injury. We also demonstrate an important role of RGS4 actions in gene expression patterns induced by chronic pain states in the mouse thalamus. Our findings provide novel insight into mechanisms associated with the maintenance of chronic pain states and demonstrate that interventions in RGS4 activity promote recovery from sensory hypersensitivity symptoms.


Asunto(s)
Dolor Crónico/metabolismo , Hiperalgesia/metabolismo , Proteínas RGS/metabolismo , Núcleos Talámicos/metabolismo , Animales , Dolor Crónico/genética , Regulación hacia Abajo , Femenino , Hiperalgesia/genética , Masculino , Ratones , Ratones Noqueados , Dimensión del Dolor , Proteínas RGS/genética , Factores Sexuales , Transducción de Señal/fisiología
9.
Proc Natl Acad Sci U S A ; 115(9): E2085-E2094, 2018 02 27.
Artículo en Inglés | MEDLINE | ID: mdl-29440403

RESUMEN

Regulator of G protein signaling z1 (RGSz1), a member of the RGS family of proteins, is present in several networks expressing mu opioid receptors (MOPRs). By using genetic mouse models for global or brain region-targeted manipulations of RGSz1 expression, we demonstrated that the suppression of RGSz1 function increases the analgesic efficacy of MOPR agonists in male and female mice and delays the development of morphine tolerance while decreasing the sensitivity to rewarding and locomotor activating effects. Using biochemical assays and next-generation RNA sequencing, we identified a key role of RGSz1 in the periaqueductal gray (PAG) in morphine tolerance. Chronic morphine administration promotes RGSz1 activity in the PAG, which in turn modulates transcription mediated by the Wnt/ß-catenin signaling pathway to promote analgesic tolerance to morphine. Conversely, the suppression of RGSz1 function stabilizes Axin2-Gαz complexes near the membrane and promotes ß-catenin activation, thereby delaying the development of analgesic tolerance. These data show that the regulation of RGS complexes, particularly those involving RGSz1-Gαz, represents a promising target for optimizing the analgesic actions of opioids without increasing the risk of dependence or addiction.


Asunto(s)
Analgésicos Opioides/farmacología , Proteínas RGS/antagonistas & inhibidores , Vía de Señalización Wnt , Analgesia , Animales , Condicionamiento Psicológico , Femenino , Proteínas de Unión al GTP/metabolismo , Inflamación , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Morfina/farmacología , Neuronas/metabolismo , Sustancia Gris Periacueductal/metabolismo , Proteínas RGS/metabolismo , Análisis de Secuencia de ARN , Proteínas Wnt/metabolismo , beta Catenina/metabolismo
10.
Sci Signal ; 10(471)2017 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-28325815

RESUMEN

Neuropathic pain is a complex chronic condition characterized by various sensory, cognitive, and affective symptoms. A large percentage of patients with neuropathic pain are also afflicted with depression and anxiety disorders, a pattern that is also seen in animal models. Furthermore, clinical and preclinical studies indicate that chronic pain corresponds with adaptations in several brain networks involved in mood, motivation, and reward. Chronic stress is also a major risk factor for depression. We investigated whether chronic pain and stress affect similar molecular mechanisms and whether chronic pain can affect gene expression patterns that are involved in depression. Using two mouse models of neuropathic pain and depression [spared nerve injury (SNI) and chronic unpredictable stress (CUS)], we performed next-generation RNA sequencing and pathway analysis to monitor changes in gene expression in the nucleus accumbens (NAc), the medial prefrontal cortex (mPFC), and the periaqueductal gray (PAG). In addition to finding unique transcriptome profiles across these regions, we identified a substantial number of signaling pathway-associated genes with similar changes in expression in both SNI and CUS mice. Many of these genes have been implicated in depression, anxiety, and chronic pain in patients. Our study provides a resource of the changes in gene expression induced by long-term neuropathic pain in three distinct brain regions and reveals molecular connections between pain and chronic stress.


Asunto(s)
Encéfalo/metabolismo , Depresión/genética , Regulación de la Expresión Génica , Red Nerviosa/metabolismo , Neuralgia/fisiopatología , Adaptación Fisiológica/genética , Animales , Encéfalo/fisiopatología , Dolor Crónico/fisiopatología , Análisis por Conglomerados , Perfilación de la Expresión Génica/métodos , Ratones Endogámicos C57BL , Ratones Noqueados , Núcleo Accumbens/metabolismo , Núcleo Accumbens/fisiopatología , Sustancia Gris Periacueductal/metabolismo , Sustancia Gris Periacueductal/fisiopatología , Corteza Prefrontal/metabolismo , Corteza Prefrontal/fisiopatología , Transducción de Señal/genética , Estrés Psicológico/fisiopatología
11.
Neuropsychopharmacology ; 42(7): 1548-1556, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28074831

RESUMEN

Regulator of G-protein signaling 9-2 (RGS9-2) is a striatal-enriched signal-transduction modulator known to have a critical role in the development of addiction-related behaviors following exposure to psychostimulants or opioids. RGS9-2 controls the function of several G-protein-coupled receptors, including dopamine receptor and mu opioid receptor (MOR). We previously showed that RGS9-2 complexes negatively control morphine analgesia, and promote the development of morphine tolerance. In contrast, RGS9-2 positively modulates the actions of other opioid analgesics, such as fentanyl and methadone. Here we investigate the role of RGS9-2 in regulating responses to oxycodone, an MOR agonist prescribed for the treatment of severe pain conditions that has addictive properties. Using mice lacking the Rgs9 gene (RGS9KO), we demonstrate that RGS9-2 positively regulates the rewarding effects of oxycodone in pain-free states, and in a model of neuropathic pain. Furthermore, although RGS9-2 does not affect the analgesic efficacy of oxycodone or the expression of physical withdrawal, it opposes the development of oxycodone tolerance, in both acute pain and chronic neuropathic pain models. Taken together, these data provide new information on the signal-transduction mechanisms that modulate the rewarding and analgesic actions of oxycodone.


Asunto(s)
Analgésicos Opioides/uso terapéutico , Dolor Crónico/tratamiento farmacológico , Dolor Crónico/metabolismo , Oxicodona/uso terapéutico , Dimensión del Dolor/métodos , Proteínas RGS/deficiencia , Analgésicos Opioides/farmacología , Animales , Relación Dosis-Respuesta a Droga , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Oxicodona/farmacología , Dimensión del Dolor/efectos de los fármacos , Resultado del Tratamiento
12.
Elife ; 52016 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-27097105

RESUMEN

Gene-environment interactions impact the development of neuropsychiatric disorders, but the relative contributions are unclear. Here, we identify gut microbiota as sufficient to induce depressive-like behaviors in genetically distinct mouse strains. Daily gavage of vehicle (dH2O) in nonobese diabetic (NOD) mice induced a social avoidance behavior that was not observed in C57BL/6 mice. This was not observed in NOD animals with depleted microbiota via oral administration of antibiotics. Transfer of intestinal microbiota, including members of the Clostridiales, Lachnospiraceae and Ruminococcaceae, from vehicle-gavaged NOD donors to microbiota-depleted C57BL/6 recipients was sufficient to induce social avoidance and change gene expression and myelination in the prefrontal cortex. Metabolomic analysis identified increased cresol levels in these mice, and exposure of cultured oligodendrocytes to this metabolite prevented myelin gene expression and differentiation. Our results thus demonstrate that the gut microbiota modifies the synthesis of key metabolites affecting gene expression in the prefrontal cortex, thereby modulating social behavior.


Asunto(s)
Bacterias/metabolismo , Microbioma Gastrointestinal , Regulación de la Expresión Génica , Corteza Prefrontal/fisiología , Conducta Social , Transcripción Genética , Animales , Cresoles/análisis , Metabolómica , Ratones Endogámicos C57BL , Ratones Endogámicos NOD
13.
Proc Natl Acad Sci U S A ; 112(36): E5088-97, 2015 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-26305935

RESUMEN

The striatal protein Regulator of G-protein signaling 9-2 (RGS9-2) plays a key modulatory role in opioid, monoamine, and other G-protein-coupled receptor responses. Here, we use the murine spared-nerve injury model of neuropathic pain to investigate the mechanism by which RGS9-2 in the nucleus accumbens (NAc), a brain region involved in mood, reward, and motivation, modulates the actions of tricyclic antidepressants (TCAs). Prevention of RGS9-2 action in the NAc increases the efficacy of the TCA desipramine and dramatically accelerates its onset of action. By controlling the activation of effector molecules by G protein α and ßγ subunits, RGS9-2 affects several protein interactions, phosphoprotein levels, and the function of the epigenetic modifier histone deacetylase 5, which are important for TCA responsiveness. Furthermore, information from RNA-sequencing analysis reveals that RGS9-2 in the NAc affects the expression of many genes known to be involved in nociception, analgesia, and antidepressant drug actions. Our findings provide novel information on NAc-specific cellular mechanisms that mediate the actions of TCAs in neuropathic pain states.


Asunto(s)
Antidepresivos/farmacología , Cuerpo Estriado/metabolismo , Neuralgia/prevención & control , Proteínas RGS/metabolismo , Adaptación Fisiológica/efectos de los fármacos , Adaptación Fisiológica/genética , Animales , Western Blotting , Cuerpo Estriado/fisiopatología , Femenino , Expresión Génica/efectos de los fármacos , Ontología de Genes , Redes Reguladoras de Genes/efectos de los fármacos , Hiperalgesia/fisiopatología , Hiperalgesia/prevención & control , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Neuralgia/genética , Neuralgia/fisiopatología , Núcleo Accumbens/metabolismo , Núcleo Accumbens/fisiopatología , Proteínas RGS/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Resultado del Tratamiento
14.
Neurobiol Learn Mem ; 115: 43-8, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25150149

RESUMEN

The signal transduction modulator Rgs9-2 (Regulator of G protein signaling 9-2) plays a key role in dopaminergic and opioidergic transmission in the striatum. Rgs9-2 is a potent modulator of opiate reward and analgesia, but its role in chronic pain remains unknown. Here, we use the spared nerve injury model (SNI), to evaluate the influence of Rgs9-2 in sensory symptoms, as well as in anxiety and depression-like behaviors observed under neuropathic pain conditions. Our data demonstrate that knockout of the Rgs9 gene reduces the intensity of thermal hyperalgesia and mechanical allodynia the first few days after nerve injury. This small, but significant effect is only observed at early time points after nerve injury, whereas after the first week of SNI, Rgs9 knockout (Rgs9KO) and Rgs9 wildtype (Rgs9WT) mice show similar levels of mechanical allodynia and thermal hyperalgesia. Furthermore, Rgs9-2 deletion exacerbates anxiety and depression like behaviors several weeks after the emergence of the neuropathic pain symptoms. Our findings also reveal a temporal and regional regulation of Rgs9-2 protein expression by neuropathic pain, as Rgs9-2 levels are reduced in the spinal cord a few days after nerve injury, whereas decreased Rgs9-2 levels in the Nucleus Accumbens (NAc) are only observed several weeks after nerve injury. Thus, adaptations in Rgs9-2 activity in the spinal cord and in the NAc may contribute to sensory and affective components of neuropathic pain.


Asunto(s)
Neuralgia/fisiopatología , Proteínas RGS/fisiología , Afecto/fisiología , Animales , Ansiedad/fisiopatología , Western Blotting , Depresión/fisiopatología , Femenino , Hiperalgesia/fisiopatología , Ratones Endogámicos C57BL , Ratones Noqueados , Neuralgia/psicología , Núcleo Accumbens/química , Proteínas RGS/análisis , Médula Espinal/química
15.
Neuropsychopharmacology ; 39(8): 1968-77, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24561386

RESUMEN

Regulator of G protein signalling 9-2 (Rgs9-2) modulates the actions of a wide range of CNS-acting drugs by controlling signal transduction of several GPCRs in the striatum. RGS9-2 acts via a complex mechanism that involves interactions with Gα subunits, the Gß5 protein, and the adaptor protein R7BP. Our recent work identified Rgs9-2 complexes in the striatum associated with acute or chronic exposures to mu opioid receptor (MOR) agonists. In this study we use several new genetic tools that allow manipulations of Rgs9-2 activity in particular brain regions of adult mice in order to better understand the mechanism via which this protein modulates opiate addiction and analgesia. We used adeno-associated viruses (AAVs) to express forms of Rgs9-2 in the dorsal and ventral striatum (nucleus accumbens, NAc) in order to examine the influence of this protein in morphine actions. Consistent with earlier behavioural findings from constitutive Rgs9 knockout mice, we show that Rgs9-2 actions in the NAc modulate morphine reward and dependence. Notably, Rgs9-2 in the NAc affects the analgesic actions of morphine as well as the development of analgesic tolerance. Using optogenetics we demonstrate that activation of Channelrhodopsin2 in Rgs9-2-expressing neurons, or in D1 dopamine receptor (Drd1)-enriched medium spiny neurons, accelerates the development of morphine tolerance, whereas activation of D2 dopamine receptor (Drd2)-enriched neurons does not significantly affect the development of tolerance. Together, these data provide new information on the signal transduction mechanisms underlying opiate actions in the NAc.


Asunto(s)
Analgésicos Opioides/farmacología , Morfina/farmacología , Neuronas/metabolismo , Núcleo Accumbens/efectos de los fármacos , Núcleo Accumbens/metabolismo , Proteínas RGS/metabolismo , Animales , Masculino , Ratones , Ratones Endogámicos C57BL , Neostriado/efectos de los fármacos , Neostriado/metabolismo , Optogenética , Receptores de Dopamina D1/metabolismo , Receptores de Dopamina D2/metabolismo , Recompensa , Transducción de Señal/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...