Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 180
Filtrar
1.
2.
FEBS Lett ; 597(22): 2833-2850, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37805446

RESUMEN

Two related post-translational modifications, the covalent linkage of Ubiquitin and the Small Ubiquitin-related MOdifier (SUMO) to lysine residues, play key roles in the regulation of both DNA repair pathway choice and transcription. Whereas ubiquitination is generally associated with proteasome-mediated protein degradation, the impact of sumoylation has been more mysterious. In the cell nucleus, sumoylation effects are largely mediated by the relocalization of the modified targets, particularly in response to DNA damage. This is governed in part by the concentration of SUMO protease at nuclear pores [Melchior, F et al. (2003) Trends Biochem Sci 28, 612-618; Ptak, C and Wozniak, RW (2017) Adv Exp Med Biol 963, 111-126]. We review here the roles of sumoylation in determining genomic locus positioning relative to the nuclear envelope and to nuclear pores, to facilitate repair and regulate transcription.


Asunto(s)
Poro Nuclear , Ubiquitina , Poro Nuclear/genética , Poro Nuclear/metabolismo , Ubiquitina/metabolismo , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina/genética , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina/química , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina/metabolismo , Reparación del ADN , Ubiquitinación , Sumoilación
3.
Cell Death Differ ; 2023 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-37596440

RESUMEN

Cellular senescence, a cell state characterized by growth arrest and insensitivity to growth stimulatory hormones, is accompanied by a massive change in chromatin organization. Senescence can be induced by a range of physiological signals and pathological stresses and was originally thought to be an irreversible state, implicated in normal development, wound healing, tumor suppression and aging. Recently cellular senescence was shown to be reversible in some cases, with exit being triggered by the modulation of the cell's transcriptional program by the four Yamanaka factors, the suppression of p53 or H3K9me3, PDK1, and/or depletion of AP-1. Coincident with senescence reversal are changes in chromatin organization, most notably the loss of senescence-associated heterochromatin foci (SAHF) found in oncogene-induced senescence. In addition to fixed-cell imaging, chromatin conformation capture and multi-omics have been used to examine chromatin reorganization at different spatial resolutions during senescence. They identify determinants of SAHF formation and other key features that differentiate distinct types of senescence. Not surprisingly, multiple factors, including the time of induction, the type of stress experienced, and the type of cell involved, influence the global reorganization of chromatin in senescence. Here we discuss how changes in the three-dimensional organization of the genome contribute to the regulation of transcription at different stages of senescence. In particular, the distinct contributions of heterochromatin- and lamina-mediated interactions, changes in gene expression, and other cellular control mechanisms are discussed. We propose that high-resolution temporal and spatial analyses of the chromatin landscape during senescence will identify early markers of the different senescence states to help guide clinical diagnosis.

4.
5.
Genes Dev ; 37(1-2): 25-26, 2023 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-37061994
7.
Nat Rev Mol Cell Biol ; 23(9): 623-640, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35562425

RESUMEN

Heterochromatin is characterized by dimethylated or trimethylated histone H3 Lys9 (H3K9me2 or H3K9me3, respectively) and is found at transposable elements, satellite repeats and genes, where it ensures their transcriptional silencing. The histone methyltransferases (HMTs) that methylate H3K9 - in mammals Suppressor of variegation 3-9 homologue 1 (SUV39H1), SUV39H2, SET domain bifurcated 1 (SETDB1), SETDB2, G9A and G9A-like protein (GLP) - and the 'readers' of H3K9me2 or H3K9me3 are highly conserved and show considerable redundancy. Despite their redundancy, genetic ablation or mistargeting of an individual H3K9 methyltransferase can correlate with impaired cell differentiation, loss of tissue identity, premature aging and/or cancer. In this Review, we discuss recent advances in understanding the roles of the known H3K9-specific HMTs in ensuring transcriptional homeostasis during tissue differentiation in mammals. We examine the effects of H3K9-methylation-dependent gene repression in haematopoiesis, muscle differentiation and neurogenesis in mammals, and compare them with mechanistic insights obtained from the study of model organisms, notably Caenorhabditis elegans and Drosophila melanogaster. In all these organisms, H3K9-specific HMTs have both unique and redundant roles that ensure the maintenance of tissue integrity by restricting the binding of transcription factors to lineage-specific promoters and enhancer elements.


Asunto(s)
Heterocromatina , N-Metiltransferasa de Histona-Lisina , Animales , Caenorhabditis elegans/genética , Drosophila melanogaster/genética , Heterocromatina/genética , N-Metiltransferasa de Histona-Lisina/genética , N-Metiltransferasa de Histona-Lisina/metabolismo , Histonas/metabolismo , Mamíferos/genética , Metilación
9.
PLoS Biol ; 20(4): e3001623, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35452449

RESUMEN

Molecular biology holds a vast potential for tackling climate change and biodiversity loss. Yet, it is largely absent from the current strategies. We call for a community-wide action to bring molecular biology to the forefront of climate change solutions.


Asunto(s)
Biodiversidad , Cambio Climático , Ecosistema , Biología Molecular
10.
Epigenomics ; 14(6): 331-337, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35259924

RESUMEN

In this interview, Professor Susan Gasser speaks with Storm Johnson, commissioning editor for Epigenomics, on her research on genome stability, epigenetic regulation and chromatin organization, as well as her work supporting women in research. Susan Gasser completed her BA at the University of Chicago, with an honors thesis in biophysics, and her PhD in biochemistry at the University of Basel in 1982, with Gottfried Schatz. She was a postdoc with Ulrich Laemmli at the University of Geneva, which initiated her career-long interest in chromosomes and chromatin structure. She established her own laboratory at the Swiss Institute for Experimental Cancer Research (ISREC) in 1986, focusing on chromatin organization in budding yeast, combining genetics, microscopy and biochemical approaches to understanding silent chromatin and telomeres. In 2001, she was named professor of molecular biology at the University of Geneva and expanded her laboratory's pioneering use of high-resolution time-lapse fluorescence microscopy to study single locus dynamics in the nucleus. From 2004 to 2019, Susan was the Director of the Friedrich Miescher Institute for Biomedical Research in Basel, where she also led a research group until the end of 2020. In Basel, she extended her research interests into heterochromatin in Caenorhabditis elegans. Her laboratory identified the mechanisms that position tissue-specific genes in the nuclei of embryos and of differentiated tissues, combining high throughput molecular analyses with cell biology to determine structure-function relationships in chromatin. Since January 2021, Susan Gasser has been professor invité at the University of Lausanne and Director of the ISREC Foundation, where she is helping shape the new Agora Institute of Translational Cancer Research. She was elected to the Académie de France, Leopoldina, European Molecular Biology Organization (EMBO), American Association for the Advancement of Science and Swiss Academy of Medical Sciences, and she received the French National Institute of Health and Medical Research (INSERM) International Prize in 2011, the Federation of European Biochemical Societies | EMBO Women in Science Award in 2012, the Weizmann Institute Women in Science Award in 2013 and honorary doctorates from the University of Lausanne, the University of Fribourg and Charles University in Prague. In Switzerland, she was the recipient of the Friedrich Miescher Award, the National Latsis Prize and the Otto Naegeli Award for the promotion of medical research. She participates in numerous review boards and advisory committees in Switzerland, across Europe and in Japan; she currently serves on the governing board of the Swiss Federal Institutes of Technology and the Swiss Science Council. From 2000 to 2004, she was vice chairperson, then chairperson of the EMBO Council. Susan led the Gender Committee of the Swiss National Science Foundation from 2014 to 2019 and initiated the Swiss National Science Foundation Prima program for the Promotion of women in academia. She has actively promoted the careers of women scientists in Europe and Japan.


Asunto(s)
Investigación Biomédica , Equidad de Género , Cromatina/genética , Epigénesis Genética , Epigenómica , Femenino , Humanos
11.
Nat Struct Mol Biol ; 29(2): 85-96, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35102319

RESUMEN

Transcriptionally silenced heterochromatin bearing methylation of histone H3 on lysine 9 (H3K9me) is critical for maintaining organismal viability and tissue integrity. Here we show that in addition to ensuring H3K9me, MET-2, the Caenorhabditis elegans homolog of the SETDB1 histone methyltransferase, has a noncatalytic function that contributes to gene repression. Subnuclear foci of MET-2 coincide with H3K9me deposition, yet these foci also form when MET-2 is catalytically deficient and H3K9me is compromised. Whereas met-2 deletion triggers a loss of silencing and increased histone acetylation, foci of catalytically deficient MET-2 maintain silencing of a subset of genes, blocking acetylation on H3K9 and H3K27. In normal development, this noncatalytic MET-2 activity helps to maintain fertility. Under heat stress MET-2 foci disperse, coinciding with increased acetylation and transcriptional derepression. Our study suggests that the noncatalytic, focus-forming function of this SETDB1-like protein and its intrinsically disordered cofactor LIN-61 is physiologically relevant.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , N-Metiltransferasa de Histona-Lisina/metabolismo , Animales , Animales Modificados Genéticamente , Biocatálisis , Caenorhabditis elegans/genética , Caenorhabditis elegans/crecimiento & desarrollo , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas Cromosómicas no Histona/deficiencia , Proteínas Cromosómicas no Histona/genética , Proteínas Cromosómicas no Histona/metabolismo , Silenciador del Gen , Heterocromatina/genética , Heterocromatina/metabolismo , N-Metiltransferasa de Histona-Lisina/deficiencia , N-Metiltransferasa de Histona-Lisina/genética , Histonas/metabolismo , Proteínas Intrínsecamente Desordenadas/genética , Proteínas Intrínsecamente Desordenadas/metabolismo , Metilación , Modelos Biológicos , Mutación , Transcripción Genética
12.
Nat Cell Biol ; 23(11): 1163-1175, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34737442

RESUMEN

The developmental role of histone H3K9 methylation (H3K9me), which typifies heterochromatin, remains unclear. In Caenorhabditis elegans, loss of H3K9me leads to a highly divergent upregulation of genes with tissue and developmental-stage specificity. During development H3K9me is lost from differentiated cell type-specific genes and gained at genes expressed in earlier developmental stages or other tissues. The continuous deposition of H3K9me2 by the SETDB1 homolog MET-2 after terminal differentiation is necessary to maintain repression. In differentiated tissues, H3K9me ensures silencing by restricting the activity of a defined set of transcription factors at promoters and enhancers. Increased chromatin accessibility following the loss of H3K9me is neither sufficient nor necessary to drive transcription. Increased ATAC-seq signal and gene expression correlate at a subset of loci positioned away from the nuclear envelope, while derepressed genes at the nuclear periphery remain poorly accessible despite being transcribed. In conclusion, H3K9me deposition can confer tissue-specific gene expression and maintain the integrity of terminally differentiated muscle by restricting transcription factor activity.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Diferenciación Celular , Ensamble y Desensamble de Cromatina , N-Metiltransferasa de Histona-Lisina/metabolismo , Histonas/metabolismo , Procesamiento Proteico-Postraduccional , Transcripción Genética , Animales , Animales Modificados Genéticamente , Sitios de Unión , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Secuenciación de Inmunoprecipitación de Cromatina , Perfilación de la Expresión Génica , N-Metiltransferasa de Histona-Lisina/genética , Histonas/genética , Metilación , Unión Proteica , Factores de Tiempo , Transcriptoma
13.
STAR Protoc ; 2(4): 100825, 2021 12 17.
Artículo en Inglés | MEDLINE | ID: mdl-34568845

RESUMEN

Here, we describe a fractionation protocol optimized to quantify changes in relative abundance of the chromatin-bound proteome (chromatome) by tandem mass tag multiplexing-based tandem mass spectrometry. It has been applied to yeast cells before and after exposure to DNA-damaging drugs to characterize changes in chromatin composition induced by the DNA damage response. We detail steps for stringent chromatin fractionation, sample preparation for mass spectrometry, and its evaluation. For complete details on the use and execution of this protocol, please refer to Challa et al. (2021).


Asunto(s)
Cromatina , Proteoma , Proteómica/métodos , Saccharomycetales , Sacarosa/química , Cromatina/química , Cromatina/genética , Cromatina/aislamiento & purificación , Proteoma/análisis , Proteoma/química , Proteoma/genética , Saccharomycetales/química , Saccharomycetales/genética , Saccharomycetales/metabolismo , Espectrometría de Masas en Tándem/métodos
14.
EMBO J ; 40(21): e108439, 2021 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-34569643

RESUMEN

Upon replication stress, budding yeast checkpoint kinase Mec1ATR triggers the downregulation of transcription, thereby reducing the level of RNA polymerase (RNAP) on chromatin to facilitate replication fork progression. Here, we identify a hydroxyurea-induced phosphorylation site on Mec1, Mec1-S1991, that contributes to the eviction of RNAPII and RNAPIII during replication stress. The expression of the non-phosphorylatable mec1-S1991A mutant reduces replication fork progression genome-wide and compromises survival on hydroxyurea. This defect can be suppressed by destabilizing chromatin-bound RNAPII through a TAP fusion to its Rpb3 subunit, suggesting that lethality in mec1-S1991A mutants arises from replication-transcription conflicts. Coincident with a failure to repress gene expression on hydroxyurea in mec1-S1991A cells, highly transcribed genes such as GAL1 remain bound at nuclear pores. Consistently, we find that nuclear pore proteins and factors controlling RNAPII and RNAPIII are phosphorylated in a Mec1-dependent manner on hydroxyurea. Moreover, we show that Mec1 kinase also contributes to reduced RNAPII occupancy on chromatin during an unperturbed S phase by promoting degradation of the Rpb1 subunit.


Asunto(s)
Replicación del ADN , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Procesamiento Proteico-Postraduccional , Proteínas Serina-Treonina Quinasas/metabolismo , ARN Polimerasa III/genética , ARN Polimerasa II/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Cromatina/química , Cromatina/efectos de los fármacos , Cromatina/metabolismo , Galactoquinasa/genética , Galactoquinasa/metabolismo , Regulación Fúngica de la Expresión Génica , Hidroxiurea/farmacología , Péptidos y Proteínas de Señalización Intracelular/genética , Fosfoproteínas , Fosforilación , Proteínas Serina-Treonina Quinasas/genética , ARN Polimerasa II/metabolismo , ARN Polimerasa III/metabolismo , Fase S/efectos de los fármacos , Fase S/genética , Saccharomyces cerevisiae/genética , Estrés Fisiológico/efectos de los fármacos , Estrés Fisiológico/genética , Transcripción Genética
15.
Mol Biol Cell ; 32(20): br6, 2021 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-34379448

RESUMEN

On induction of DNA damage with 405-nm laser light, proteins involved in base excision repair (BER) are recruited to DNA lesions. We find that the dynamics of factors typical of either short-patch (XRCC1) or long-patch (PCNA) BER are altered by chemicals that perturb actin or tubulin polymerization in human cells. Whereas the destabilization of actin filaments by latrunculin B, cytochalasin B, or Jasplakinolide decreases BER factor accumulation at laser-induced damage, inhibition of tubulin polymerization by nocodazole increases it. We detect no recruitment of actin to sites of laser-induced DNA damage, yet the depolymerization of cytoplasmic actin filaments elevates both actin and tubulin signals in the nucleus. While published evidence suggested a positive role for F-actin in double-strand break repair in mammals, the enrichment of actin in budding yeast nuclei interferes with BER, augmenting sensitivity to Zeocin. Our quantitative imaging results suggest that the depolymerization of cytoplasmic actin may compromise BER efficiency in mammals not only due to elevated levels of nuclear actin but also of tubulin, linking cytoskeletal integrity to BER.


Asunto(s)
Reparación del ADN/fisiología , Antígeno Nuclear de Célula en Proliferación/metabolismo , Proteína 1 de Reparación por Escisión del Grupo de Complementación Cruzada de las Lesiones por Rayos X/metabolismo , Actinas/metabolismo , Línea Celular Tumoral , Núcleo Celular/metabolismo , Citoesqueleto/fisiología , ADN/metabolismo , Daño del ADN/genética , Daño del ADN/fisiología , Reparación del ADN/genética , Proteínas de Unión al ADN/metabolismo , Células HeLa , Humanos , Antígeno Nuclear de Célula en Proliferación/fisiología , Tubulina (Proteína)/metabolismo , Proteína 1 de Reparación por Escisión del Grupo de Complementación Cruzada de las Lesiones por Rayos X/fisiología
16.
Life Sci Alliance ; 4(9)2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34226278

RESUMEN

DNA polymerase δ, which contains the catalytic subunit, Pol3, Pol31, and Pol32, contributes both to DNA replication and repair. The deletion of pol31 is lethal, and compromising the Pol3-Pol31 interaction domains confers hypersensitivity to cold, hydroxyurea (HU), and methyl methanesulfonate, phenocopying pol32Δ. We have identified alanine-substitutions in pol31 that suppress these deficiencies in pol32Δ cells. We characterize two mutants, pol31-T415A and pol31-W417A, which map to a solvent-exposed loop that mediates Pol31-Pol3 and Pol31-Rev3 interactions. The pol31-T415A substitution compromises binding to the Pol3 CysB domain, whereas Pol31-W417A improves it. Importantly, loss of Pol32, such as pol31-T415A, leads to reduced Pol3 and Pol31 protein levels, which are restored by pol31-W417A. The mutations have differential effects on recovery from acute HU, break-induced replication and trans-lesion synthesis repair pathways. Unlike trans-lesion synthesis and growth on HU, the loss of break-induced replication in pol32Δ cells is not restored by pol31-W417A, highlighting pathway-specific roles for Pol32 in fork-related repair. Intriguingly, CHIP analyses of replication forks on HU showed that pol32Δ and pol31-T415A indirectly destabilize DNA pol α and pol ε at stalled forks.


Asunto(s)
ADN Polimerasa III/química , ADN Polimerasa III/metabolismo , Reparación del ADN , Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Subunidades de Proteína , Sitios de Unión , Replicación del ADN , Complejos Multiproteicos , Unión Proteica , Levaduras/genética , Levaduras/metabolismo
17.
ACS Chem Biol ; 16(5): 820-828, 2021 05 21.
Artículo en Inglés | MEDLINE | ID: mdl-33843189

RESUMEN

Actin is the most abundant protein in eukaryotic cells and is key to many cellular functions. The filamentous form of actin (F-actin) can be studied with help of natural products that specifically recognize it, as for example fluorophore-labeled probes of the bicyclic peptide phalloidin, but no synthetic probes exist for the monomeric form of actin (G-actin). Herein, we have panned a phage display library consisting of more than 10 billion bicyclic peptides against G-actin and isolated binders with low nanomolar affinity and greater than 1000-fold selectivity over F-actin. Sequence analysis revealed a strong similarity to a region of thymosin-ß4, a protein that weakly binds G-actin, and competition binding experiments confirmed a common binding region at the cleft between actin subdomains 1 and 3. Together with F-actin-specific peptides that we also isolated, we evaluated the G-actin peptides as probes in pull-down, imaging, and competition binding experiments. While the F-actin peptides were applied successfully for capturing actin in cell lysates and for imaging, the G-actin peptides did not bind in the cellular context, most likely due to competition with thymosin-ß4 or related endogenous proteins for the same binding site.


Asunto(s)
Actinas/química , Proteínas de Microfilamentos/química , Péptidos Cíclicos/química , Timosina/química , Citoesqueleto de Actina/química , Sitios de Unión , Unión Competitiva , Células HeLa , Humanos , Técnicas In Vitro , Toxinas Marinas/química , Oxazoles/química , Biblioteca de Péptidos , Unión Proteica , Conformación Proteica , Relación Estructura-Actividad
20.
EMBO Rep ; 22(3): e52528, 2021 03 03.
Artículo en Inglés | MEDLINE | ID: mdl-33634936

RESUMEN

The Japanese government has enacted measures to increase the representation of women in research; the situation is improving but there is still much to do.


Asunto(s)
Gobierno , Femenino , Humanos , Japón
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...