Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sensors (Basel) ; 24(4)2024 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-38400413

RESUMEN

Chemosensor technology for trace gases in the air always aims to identify these compounds and then measure their concentrations. For identification, traceable methods are sparse and relate to large appliances such as mass spectrometers. We present a new method that uses the alternative traceable measurement of the ionization energies of trace gases in a way that can be miniaturized and energetically tuned. We investigate the achievable performance. Since tunable UV sources are not available for photoionization, we take a detour via impact ionization with electrons, which we generate using the photoelectric effect and bring to sharp, defined energies on a nanoscale in the air. Electron impact ionization is thus possible at air pressures of up to 900 hPa. The sensitivity of the process reaches 1 ppm and is equivalent to that of classic PID. With sharpened energy settings, substance identification is currently possible with an accuracy of 30 meV. We can largely explain the experimental observations with the known quantum mechanical models.

2.
Micromachines (Basel) ; 14(11)2023 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-38004959

RESUMEN

The infield measurement of nutrients, heavy metals, and other contaminants in water is still a needed tool in environmental sciences. The Lab-on-a-chip approach can develop deployable instruments that use the standardized analytical assay in a miniaturized manner in the field. This paper presents a Lab-on-a-chip platform for colorimetric measurements that can be deployed for nutrient monitoring in open water (oceans, rivers, lakes, etc.). Nitrite was selected as an analyte. Change to other analytes is possible by changing the reagents and the detection wavelength. In this paper, the principle of the sensor, technical realization, setup of the sensor, and test deployment are described. The sensor prototype was deployed at the Jade Bay (German Bight) for 9 h, measuring the nitrite value every 20 min. Reference samples were taken and processed in the lab. The work presented here shows that an infield measurement using a colorimetric assay is possible by applying Lab-on-a-chip principles.

3.
Micromachines (Basel) ; 13(3)2022 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-35334762

RESUMEN

The combination of printed circuit boards (PCB) and microfluidics has many advantages. The combination of electrodes, sensors and electronics is needed for almost all microfluidic systems. Using PCBs as a substrate, this integration is intrinsic. Additive manufacturing has become a widely used technique in industry, research and by hobbyists. One very promising rapid prototype technique is vat polymerization with an LCD as mask, also known as masked stereolithography (mSLA). These printers are available with resolutions down to 35 µm, and they are affordable. In this paper, a technology is described which creates microfluidics on a PCB substrate using an mSLA printer. All steps of the production process can be carried out with commercially available printers and resins: this includes the structuring of the copper layer of the PCB and the buildup of the channel layer on top of the PCB. Copper trace dimensions down to 100 µm and channel dimensions of 800 µm are feasible. The described technology is a low-cost solution for combining PCBs and microfluidics.

4.
Bioengineering (Basel) ; 9(1)2021 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-35049719

RESUMEN

The ingress of body fluids or their constituents is one of the main causes of failure of active implantable medical devices (AIMDs). Progressive delamination takes its origin at the junctions where exposed electrodes and conductive pathways enter the implant interior. The description of this interface is considered challenging because electrochemically-diffusively coupled processes are involved. Furthermore, standard tests and specimens, with clearly defined 3-phase boundaries (body fluid-metal-polymer), are lacking. We focus on polymers as substrate and encapsulation and present a simple method to fabricate reliable test specimens with defined boundaries. By using silicone rubber as standard material in active implant encapsulation in combination with a metal surface, a corrosion-triggered delamination process was observed that can be universalised towards typical AIMD electrode materials. Copper was used instead of medical grade platinum since surface energies are comparable but corrosion occurs faster. The finding is that two processes are superimposed there: First, diffusion-limited chemical reactions at interfaces that undermine the layer adhesion. The second process is the influx of ions and body fluid components that leave the aqueous phase and migrate through the rubber to internal interfaces. The latter observation is new for active implants. Our mathematical description with a Stefan-model coupled to volume diffusion reproduces the experimental data in good agreement and lends itself to further generalisation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...