Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 80
Filtrar
1.
Avian Dis ; 68(2): 141-144, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38885056

RESUMEN

The poultry-housing environment plays a significant role in the transmission and persistence of the egg-associated pathogen Salmonella Enteritidis in laying flocks. The commercial egg industry is in the midst of a transition toward cage-free housing, but the food safety ramifications of this shift are not yet certain. The present study assessed internal organ colonization by Salmonella Enteritidis in layer pullets reared in cage-free housing and infected at two different ages. Groups of 280 pullets were transferred from the rearing facility (at 9 wk of age in one trial and 15 wk in another) to a containment facility with four isolation rooms simulating commercial cage-free barns with perches and nest boxes (70 birds/room). Twenty-four pullets in each room were orally inoculated with Salmonella Enteritidis immediately after placement in the containment facility. At 1-2 wk postinoculation in each trial, samples of liver, spleen, and intestinal tract were collected from all birds in two rooms for bacteriologic culturing to detect Salmonella Enteritidis. At 21-22 wk of age, samples of spleen, ovary, and intestinal tract were similarly collected and tested from all birds in the remaining two rooms. Among samples collected at 1-2 wk postinoculation, Salmonella Enteritidis was isolated significantly more often from groups of pullets infected initially at 15 wk of age than from those infected at 9 wk (61% vs. 38% of livers, 59% vs. 31% of spleens, and 84% vs. 57% of intestines). Among samples collected at 21-22 wk of age, the frequency of recovery of Salmonella Enteritidis was again significantly greater in birds infected at 15 wk of age than in those infected at 9 wk (16% vs. 6% of spleens, 9% vs. 1% of ovaries, and 26% vs. 10% of intestines). These data suggest that Salmonella Enteritidis infections introduced into flocks during the later stages of pullet rearing have greater potential to persist into the early phase of egg production.


Nota de investigación- Colonización de órganos internos por Salmonella Enteritidis en pollitas de postura infectadas en dos edades diferentes durante la crianza en alojamiento sin jaulas. El ambiente en alojamientos avícolas juega un papel importante en la transmisión y persistencia del patógeno asociado a los huevos Salmonella Enteritidis en parvadas postura. La industria comercial del huevo se encuentra en medio de una transición hacia alojamientos sin jaulas, pero las ramificaciones de este cambio en la seguridad alimentaria aún no están determinadas. El presente estudio evaluó la colonización de órganos internos por Salmonella Enteritidis en pollitas de postura criadas en alojamientos sin jaulas e infectadas a dos edades diferentes. Se transfirieron grupos de 280 pollitas desde las instalaciones de cría (a las 9 semanas de edad en un ensayo y a las 15 semanas en un segundo ensayo) a una instalación de contención con cuatro salas de aislamiento que simulaban alojamientos comerciales sin jaulas con perchas y nidos (70 aves/sala). Veinticuatro pollitas en cada sala fueron inoculadas oralmente con Salmonella Enteritidis inmediatamente después de su colocación en la instalación de contención. En cada ensayo, de una a dos semanas después de la inoculación, se recolectaron muestras de hígado, bazo y tracto intestinal para cultivo bacteriológico de todas las aves en dos salas para detectar Salmonella Enteritidis. A las 21-22 semanas de edad, se recolectaron y analizaron de manera similar muestras de bazo, ovario y tracto intestinal de todas las aves en las dos salas restantes. Entre las muestras recolectadas entre una y dos semanas después de la inoculación, Salmonella Enteritidis se aisló significativamente con mayor frecuencia en grupos de pollitas infectadas inicialmente a las 15 semanas de edad que en aquellas infectadas a las 9 semanas (61% contra 38 % en los hígados, 59% contra 31% de bazos y 84 % contra 57% en intestinos). Entre las muestras recolectadas a las 21-22 semanas de edad, la frecuencia de recuperación de Salmonella Enteritidis fue nuevamente significativamente mayor en aves infectadas a las 15 semanas de edad que en aquellas infectadas a las 9 semanas (16% contra 6% de bazos, 9% contra 1% en ovarios y 26% contra 10% de los intestinos). Estos datos sugieren que las infecciones por Salmonella Enteritidis introducidas en las parvadas durante las últimas etapas de la cría de pollitas tienen un mayor potencial para persistir en la fase inicial de la producción de huevos.


Asunto(s)
Pollos , Vivienda para Animales , Enfermedades de las Aves de Corral , Salmonelosis Animal , Salmonella enteritidis , Animales , Salmonella enteritidis/fisiología , Salmonelosis Animal/microbiología , Enfermedades de las Aves de Corral/microbiología , Femenino , Envejecimiento , Crianza de Animales Domésticos/métodos
2.
Environ Microbiol Rep ; 16(3): e13265, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38747207

RESUMEN

Role of dust in Salmonella transmission on chicken farms is not well characterised. Salmonella Typhimurium (ST) infection of commercial layer chickens was investigated using a novel sprinkling method of chicken dust spiked with ST and the uptake compared to a conventional oral infection. While both inoculation methods resulted in colonisation of the intestines, the Salmonella load in liver samples was significantly higher at 7 dpi after exposing chicks to sprinkled dust compared to the oral infection group. Infection of chickens using the sprinkling method at a range of doses showed a threshold for colonisation of the gut and organs as low as 1000 CFU/g of dust. Caecal content microbiota analysis post-challenge showed that the profiles of chickens infected by the sprinkling and oral routes were not significantly different; however, both challenges induced differences when compared to the uninfected negative controls. Overall, the study showed that dust sprinkling was an effective way to experimentally colonise chickens with Salmonella and alter the gut microbiota than oral gavage at levels as low as 1000 CFU/g dust. This infection model mimics the field scenario of Salmonella infection in poultry sheds. The model can be used for future challenge studies for effective Salmonella control.


Asunto(s)
Pollos , Polvo , Microbioma Gastrointestinal , Enfermedades de las Aves de Corral , Salmonelosis Animal , Salmonella typhimurium , Animales , Pollos/microbiología , Salmonella typhimurium/crecimiento & desarrollo , Polvo/análisis , Salmonelosis Animal/microbiología , Salmonelosis Animal/prevención & control , Enfermedades de las Aves de Corral/microbiología , Enfermedades de las Aves de Corral/prevención & control , Ciego/microbiología , Hígado/microbiología
3.
Front Vet Sci ; 11: 1364731, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38686027

RESUMEN

Among the Salmonella reduction strategies in poultry production, one option is to use a Salmonella vaccine. The aim of vaccinating layer flocks is to reduce the shedding of wild-type Salmonella in the poultry environment, thereby reducing the contamination of poultry products (eggs and meat). Nutritive diluent and a higher dose of vaccine may enhance its colonization potential in the gut of chickens. In this study, a commercially available live attenuated vaccine (Vaxsafe® ST) was reconstituted in different media and delivered orally to day-old chicks at three different doses (107, 108, and 109 CFU/chick). Gut colonization of the vaccine strain and the effects of vaccination on gut microbiota were assessed in commercial-layer chickens. The vaccine diluent and dosage minimally affected microbiota alpha diversity. Microbiota beta diversity was significantly different (P < 0.05) based on the vaccine diluent and dose, which indicated that the vaccinated and unvaccinated chickens had different gut microbial communities. Differences were noted in the abundance of several genera, including Blautia, Colidextribacter, Dickeya, Enterococcus, Lactobacillus, Pediococcus, and Sellimonas. The abundance of Colidextribacter was significantly lower in chickens that received vaccine reconstituted in Marek's and water diluents, while Lactobacillus abundance was significantly lower in the water group. The highest vaccine dose (109 CFU/chick) did not significantly alter (P > 0.05) the abundance of microbial genera. Chicken age affected the microbiota composition more significantly than the vaccine dose and diluent. The abundance of Lactobacillus, Blautia, Caproiciproducens, Pediococcus, and Colidextribacter was significantly higher on day 14 compared with day 7 post-vaccination. The Salmonella Typhimurium vaccine load in the caeca was not significantly affected by diluent and vaccine dose; however, it was significantly lower (P < 0.0001) on day 14 compared with day 7 post-vaccination. Overall, the S. Typhimurium vaccine minimally affected the gut microbiota structure of layer chicks, whereas changes in microbiota were more significant with chicken age.

4.
Proc Natl Acad Sci U S A ; 121(3): e2311885121, 2024 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-38198531

RESUMEN

The brain is composed of complex networks of interacting neurons that express considerable heterogeneity in their physiology and spiking characteristics. How does this neural heterogeneity influence macroscopic neural dynamics, and how might it contribute to neural computation? In this work, we use a mean-field model to investigate computation in heterogeneous neural networks, by studying how the heterogeneity of cell spiking thresholds affects three key computational functions of a neural population: the gating, encoding, and decoding of neural signals. Our results suggest that heterogeneity serves different computational functions in different cell types. In inhibitory interneurons, varying the degree of spike threshold heterogeneity allows them to gate the propagation of neural signals in a reciprocally coupled excitatory population. Whereas homogeneous interneurons impose synchronized dynamics that narrow the dynamic repertoire of the excitatory neurons, heterogeneous interneurons act as an inhibitory offset while preserving excitatory neuron function. Spike threshold heterogeneity also controls the entrainment properties of neural networks to periodic input, thus affecting the temporal gating of synaptic inputs. Among excitatory neurons, heterogeneity increases the dimensionality of neural dynamics, improving the network's capacity to perform decoding tasks. Conversely, homogeneous networks suffer in their capacity for function generation, but excel at encoding signals via multistable dynamic regimes. Drawing from these findings, we propose intra-cell-type heterogeneity as a mechanism for sculpting the computational properties of local circuits of excitatory and inhibitory spiking neurons, permitting the same canonical microcircuit to be tuned for diverse computational tasks.


Asunto(s)
Interneuronas , Neuronas , Encéfalo , Redes Neurales de la Computación , Reproducción
5.
PLoS Comput Biol ; 19(12): e1011761, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38150479

RESUMEN

The mathematical study of real-world dynamical systems relies on models composed of differential equations. Numerical methods for solving and analyzing differential equation systems are essential when complex biological problems have to be studied, such as the spreading of a virus, the evolution of competing species in an ecosystem, or the dynamics of neurons in the brain. Here we present PyRates, a Python-based software for modeling and analyzing differential equation systems via numerical methods. PyRates is specifically designed to account for the inherent complexity of biological systems. It provides a new language for defining models that mirrors the modular organization of real-world dynamical systems and thus simplifies the implementation of complex networks of interacting dynamic entities. Furthermore, PyRates provides extensive support for the various forms of interaction delays that can be observed in biological systems. The core of PyRates is a versatile code-generation system that translates user-defined models into "backend" implementations in various languages, including Python, Fortran, Matlab, and Julia. This allows users to apply a wide range of analysis methods for dynamical systems, eliminating the need for manual translation between code bases. PyRates may also be used as a model definition interface for the creation of custom dynamical systems tools. To demonstrate this, we developed two extensions of PyRates for common analyses of dynamic models of biological systems: PyCoBi for bifurcation analysis and RectiPy for parameter fitting. We demonstrate in a series of example models how PyRates can be used in combination with PyCoBi and RectiPy for model analysis and fitting. Together, these tools offer a versatile framework for applying computational modeling and numerical analysis methods to dynamical systems in biology and beyond.


Asunto(s)
Ecosistema , Biología de Sistemas , Biología de Sistemas/métodos , Programas Informáticos , Simulación por Computador , Encéfalo , Modelos Biológicos
6.
Phys Rev E ; 107(2-1): 024306, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36932598

RESUMEN

Mean-field theory links the physiological properties of individual neurons to the emergent dynamics of neural population activity. These models provide an essential tool for studying brain function at different scales; however, for their application to neural populations on large scale, they need to account for differences between distinct neuron types. The Izhikevich single neuron model can account for a broad range of different neuron types and spiking patterns, thus rendering it an optimal candidate for a mean-field theoretic treatment of brain dynamics in heterogeneous networks. Here we derive the mean-field equations for networks of all-to-all coupled Izhikevich neurons with heterogeneous spiking thresholds. Using methods from bifurcation theory, we examine the conditions under which the mean-field theory accurately predicts the dynamics of the Izhikevich neuron network. To this end, we focus on three important features of the Izhikevich model that are subject here to simplifying assumptions: (i) spike-frequency adaptation, (ii) the spike reset conditions, and (iii) the distribution of single-cell spike thresholds across neurons. Our results indicate that, while the mean-field model is not an exact model of the Izhikevich network dynamics, it faithfully captures its different dynamic regimes and phase transitions. We thus present a mean-field model that can represent different neuron types and spiking dynamics. The model comprises biophysical state variables and parameters, incorporates realistic spike resetting conditions, and accounts for heterogeneity in neural spiking thresholds. These features allow for a broad applicability of the model as well as for a direct comparison to experimental data.


Asunto(s)
Modelos Neurológicos , Redes Neurales de la Computación , Potenciales de Acción/fisiología , Neuronas/fisiología , Adaptación Fisiológica
7.
Crit Rev Microbiol ; : 1-25, 2022 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-36583653

RESUMEN

Eggs contaminated with Salmonella have been internationally significant sources of human illness for several decades. Most egg-associated illness has been attributed to Salmonella serovar Enteritidis, but a few other serovars (notably S. Heidelberg and S. Typhimurium) are also sometimes implicated. The edible interior contents of eggs typically become contaminated with S. Enteritidis because the pathogen's unique virulence attributes enable it to colonize reproductive tissues in systemically infected laying hens. Other serovars are more commonly associated with surface contamination of eggshells. Both research and field experience have demonstrated that the most effective overall Salmonella control strategy in commercial laying flocks is the application of multiple interventions throughout the egg production cycle. At the preharvest (egg production) level, intervention options of demonstrated efficacy include vaccination and gastrointestinal colonization control via treatments such as prebiotics, probiotics, and bacteriophages, Effective environmental management of housing systems used for commercial laying flocks is also essential for minimizing opportunities for the introduction, transmission, and persistence of Salmonella in laying flocks. At the postharvest (egg processing and handling) level, careful regulation of egg storage temperatures is critical for limiting Salmonella multiplication inside the interior contents.

8.
Poult Sci ; 101(11): 102104, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36130450

RESUMEN

Contamination of eggs by Salmonella has often been identified as a source of food-borne human illness. S. Enteritidis is deposited inside developing eggs when invasive infections of laying hens reach the reproductive organs. The susceptibility of hens in cage-based housing systems to S. Enteritidis has been associated with their stocking density, but the applicability of this information to extensive (cage-free) systems is uncertain. The present study assessed internal organ colonization by S. Enteritidis in egg-type pullets reared at 2 different stocking densities in cage-free housing. Pullets were reared at either 374 cm2 or 929 cm2 of floor space per bird. At 16 wk of age, 4 groups of 72 pullets were moved into isolation rooms simulating commercial cage-free barns; 1/3 of the pullets in 2 rooms were orally inoculated with S. Enteritidis immediately after transfer and pullets in 2 rooms were similarly infected at 19 wk. At 6 and 12 d postinoculation, the pullets were euthanized and samples of liver, spleen, and intestinal tract were removed for bacteriologic culturing. No significant differences (P > 0.05) in S. Enteritidis isolation frequencies from any tissue were observed between high and low density rearing groups following infection at either age. However, S. Enteritidis was found significantly (P < 0.05) more frequently among pullets infected orally at 19 wk than at 16 wk in spleens and intestines. Likewise, the frequency of S. Enteritidis isolation from all birds (inoculated plus contact-exposed) at 19 wk was significantly higher than at 16 wk in livers and spleens. This increased susceptibility to invasive S. Enteritidis infection at reproductive maturity emphasizes the importance of risk reduction at a critical stage in the egg production cycle.


Asunto(s)
Enfermedades de las Aves de Corral , Salmonelosis Animal , Humanos , Animales , Femenino , Salmonella enteritidis , Pollos , Salmonelosis Animal/microbiología , Enfermedades de las Aves de Corral/microbiología , Vivienda para Animales , Óvulo
9.
Avian Dis ; 66(1): 74-78, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35191649

RESUMEN

In 2018, a national recall of shell eggs in the United States occurred due to human illness caused by Salmonella Braenderup. Although previous studies have identified Salmonella Braenderup in laying hens and the production environment, little is known about the ability of this Salmonella serovar to infect laying hens and contaminate eggs. The objective of this study was to examine the invasiveness of Salmonella Braenderup in laying hens as well as its ability to persist in the production environment. Specific-pathogen-free laying hens (four trials; 72 hens/trial) were orally challenged with 107 colony-forming units of Salmonella Braenderup. On day 6 postinoculation, half of the challenged hens were euthanatized, and samples of ileocecal junction (sections above and below it, and portions of both ceca), liver, spleen, ovary, and oviduct tissues were collected and cultured for Salmonella Braenderup. Egg and environmental (nest box swaps and substrate (litter)) samples were collected days 7-20 postinoculation (Trials 1 and 2; excluding weekends) and days 7-27 postinoculation (Trials 3 and 4; excluding weekends) to detect Salmonella Braenderup. Recovery of Salmonella Braenderup was highest in ileocecal tissue samples (11.1%-33.3%; P < 0.05), with little to no recovery in other collected tissue samples. Salmonella Braenderup was detected in a small number of shell emulsions (0%-2.9%; P < 0.01) and recovered in Trial 1 at a high rate (92.5%; P < 0.0001) in the substrate composite samples; however, recovery of Salmonella Braenderup was low in the other egg and environmental samples. These trials indicate that Salmonella Braenderup is not an invasive Salmonella serovar for cage-free laying hens, especially when compared to serovars of concern to the egg industry. However, it may persist in the environment at low levels.


Colonización de tejidos y contaminación ambiental y de huevo asociados con la infección experimental de gallinas de postura libres de jaulas por Salmonella Braenderup. En 2018, se retiraron del mercado a nivel nacional en los Estados Unidos huevos con cascarón debido a una enfermedad en humanos causada por Salmonella Braenderup. Aunque estudios anteriores han identificado Salmonella Braenderup en gallinas de postura y en ambientes de producción, se conoce poco sobre la capacidad de esta serovariedad de Salmonella para infectar a las gallinas ponedoras y contaminar el huevo. El objetivo de este estudio fue examinar la capacidad de invasión de Salmonella Braenderup en gallinas ponedoras, así como su capacidad para persistir en el ambiente de producción. Se desafiaron oralmente a gallinas de postura libres de patógenos específicos (cuatro ensayos; 72 gallinas/ensayo) con 107 unidades formadoras de colonias de Salmonella Braenderup. El día seis después de la inoculación, la mitad de las gallinas desafiadas se sacrificaron y se recolectaron y cultivaron muestras de la unión ileocecal (secciones anteriores y posteriores de la misma y porciones de ambos ciegos), hígado, bazo, ovario y oviducto y se cultivaron para Salmonella Braenderup. Se recolectaron muestras de huevos y ambientales (hisopos de las cajas de nido y sustrato [cama] en los días 7 a 20 después de la inoculación (Pruebas 1 y 2; excluyendo los fines de semana) y en los días 7 a 27 después de la inoculación (Pruebas 3 y 4; excluyendo los fines de semana) para detectar Salmonella Braenderup. La recuperación de Salmonella Braenderup fue mayor en las muestras de tejido ileocecal (11.1%­33.3%; P < 0.05), con poca o ninguna recuperación en otras muestras de tejido recolectadas. Se detectó Salmonella Braenderup en un pequeño número de emulsiones de cascarones (0%­2.9%; P < 0.01) y se recuperó en el Ensayo 1 a una tasa alta (92.5%; P < 0.0001) en las muestras compuestas de sustrato; sin embargo, la recuperación de Salmonella Braenderup fue baja en las otras muestras de huevos y ambientales. Estos ensayos indican que Salmonella Braenderup no es un serovar de Salmonella invasivo para gallinas de postura sin jaulas, especialmente cuando se compara con los serovares de interés para la industria del huevo. Sin embargo, puede persistir en el medio ambiente en niveles bajos.


Asunto(s)
Enfermedades de las Aves de Corral , Salmonelosis Animal , Animales , Pollos , Huevos , Femenino , Óvulo , Salmonella , Salmonella enteritidis
10.
Microorganisms ; 11(1)2022 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-36677389

RESUMEN

(1) Background: Foodborne illness from Salmonella enterica subspecies I is most associated with approximately 32 out of 1600 serotypes. While whole genome sequencing and other nucleic acid-based methods are preferred for serotyping, they require expertise in bioinformatics and often submission to an external agency. Intergenic Sequence Ribotyping (ISR) assigns serotype to Salmonella in coordination with information freely available at the National Center for Biotechnology Information. ISR requires updating because it was developed from 26 genomes while there are now currently 1804 genomes and 1685 plasmids. (2) Methods: Serotypes available for sequencing were analyzed by ISR to confirm primer efficacy and to identify any issues in application. Differences between the 2012 and 2022 ISR database were tabulated, nomenclature edited, and instances of multiple serotypes aligning to a single ISR were examined. (3) Results: The 2022 ISR database has 268 sequences and 40 of these were assigned new NCBI accession numbers that were not previously available. Extending boundaries of sequences resolved hdfR cross-alignment and reduced multiplicity of alignment for 37 ISRs. Comparison of gene cyaA sequences and some cell surface epitopes provided evidence that homologous recombination was potentially impacting results for this subset. There were 99 sequences that still had no match with an NCBI submission. (4) The 2022 ISR database is available for use as a serotype screening method for Salmonella enterica subspecies I. Finding that 36.9% of the sequences in the ISR database still have no match within the NCBI Salmonella enterica database suggests that there is more genomic heterogeneity yet to characterize.

11.
Phys Rev E ; 104(4-1): 044310, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34781468

RESUMEN

Low-dimensional descriptions of spiking neural network dynamics are an effective tool for bridging different scales of organization of brain structure and function. Recent advances in deriving mean-field descriptions for networks of coupled oscillators have sparked the development of a new generation of neural mass models. Of notable interest are mean-field descriptions of all-to-all coupled quadratic integrate-and-fire (QIF) neurons, which have already seen numerous extensions and applications. These extensions include different forms of short-term adaptation considered to play an important role in generating and sustaining dynamic regimes of interest in the brain. It is an open question, however, whether the incorporation of presynaptic forms of synaptic plasticity driven by single neuron activity would still permit the derivation of mean-field equations using the same method. Here we discuss this problem using an established model of short-term synaptic plasticity at the single neuron level, for which we present two different approaches for the derivation of the mean-field equations. We compare these models with a recently proposed mean-field approximation that assumes stochastic spike timings. In general, the latter fails to accurately reproduce the macroscopic activity in networks of deterministic QIF neurons with distributed parameters. We show that the mean-field models we propose provide a more accurate description of the network dynamics, although they are mathematically more involved. Using bifurcation analysis, we find that QIF networks with presynaptic short-term plasticity can express regimes of periodic bursting activity as well as bistable regimes. Together, we provide novel insight into the macroscopic effects of short-term synaptic plasticity in spiking neural networks, as well as two different mean-field descriptions for future investigations of such networks.


Asunto(s)
Modelos Neurológicos , Neuronas , Potenciales de Acción , Simulación por Computador , Redes Neurales de la Computación , Plasticidad Neuronal
12.
Poult Sci ; 100(11): 101438, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34525442

RESUMEN

Contaminated eggs are a leading source of human Salmonella infections and this problem continues to challenge public health authorities and egg industries around the world. Salmonella invasion of the ovaries and oviducts of infected laying hens can result in bacterial deposition inside the edible portions of developing eggs. The introduction, persistence, and transmission of salmonellae in commercial egg-laying flocks are influenced by flock management practices, but the food safety ramifications of different types of laying hen housing remain unresolved. The present study assessed the frequency of internal contamination of eggs after experimental Salmonella Enteritidis and S. Typhimurium infection of laying hens in indoor cage-free housing. Groups of 72 hens were housed on wood shavings in isolation rooms simulating commercial cage-free barns with community kick-out nest boxes and perches and 1/3 of the hens in each room were orally inoculated with 8.0 × 107 cfu of 2-strain mixtures of either S. Enteritidis (2 rooms) or S. Typhimurium (2 rooms), and the entire internal contents of all eggs laid 5 to 30 d postinoculation in nest boxes or on the flooring substrate were cultured to detect Salmonella. Contaminated eggs were laid between 8 and 28 d postinoculation. The overall incidence of S. Enteritidis isolation from eggs (3.41%) was significantly (P = 0.0005) greater than S. Typhimurium (1.19%). The contamination frequencies associated with the 2 egg collection locations were not significantly different (P > 0.05). These results demonstrate that oral infection of a relatively small proportion of laying hens in indoor cage-free housing with invasive Salmonella serovars can result in the production of internally contaminated eggs at low frequencies over a period of nearly a month postinoculation.


Asunto(s)
Enfermedades de las Aves de Corral , Salmonelosis Animal , Animales , Pollos , Huevos , Femenino , Vivienda para Animales , Óvulo , Salmonella enteritidis , Salmonella typhimurium
13.
J Neurosci ; 41(31): 6673-6683, 2021 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-34193559

RESUMEN

The external pallidum (globus pallidus pars externa [GPe]) plays a central role for basal ganglia functions and dynamics and, consequently, has been included in most computational studies of the basal ganglia. These studies considered the GPe as a homogeneous neural population. However, experimental studies have shown that the GPe contains at least two distinct cell types (prototypical and arkypallidal cells). In this work, we provide in silico insight into how pallidal heterogeneity modulates dynamic regimes inside the GPe and how they affect the GPe response to oscillatory input. We derive a mean-field model of the GPe system from a microscopic spiking neural network of recurrently coupled prototypical and arkypallidal neurons. Using bifurcation analysis, we examine the influence of dopamine-dependent changes of intrapallidal connectivity on the GPe dynamics. We find that increased self-inhibition of prototypical cells can induce oscillations, whereas increased inhibition of prototypical cells by arkypallidal cells leads to the emergence of a bistable regime. Furthermore, we show that oscillatory input to the GPe, arriving from striatum, leads to characteristic patterns of cross-frequency coupling observed at the GPe. Based on these findings, we propose two different hypotheses of how dopamine depletion at the GPe may lead to phase-amplitude coupling between the parkinsonian beta rhythm and a GPe-intrinsic γ rhythm. Finally, we show that these findings generalize to realistic spiking neural networks of sparsely coupled Type I excitable GPe neurons.SIGNIFICANCE STATEMENT Our work provides (1) insight into the theoretical implications of a dichotomous globus pallidus pars externa (GPe) organization, and (2) an exact mean-field model that allows for future investigations of the relationship between GPe spiking activity and local field potential fluctuations. We identify the major phase transitions that the GPe can undergo when subject to static or periodic input and link these phase transitions to the emergence of synchronized oscillations and cross-frequency coupling in the basal ganglia. Because of the close links between our model and experimental findings on the structure and dynamics of prototypical and arkypallidal cells, our results can be used to guide both experimental and computational studies on the role of the GPe for basal ganglia dynamics in health and disease.


Asunto(s)
Globo Pálido/fisiología , Modelos Neurológicos , Modelos Teóricos , Redes Neurales de la Computación , Neuronas/fisiología , Animales , Humanos
14.
Poult Sci ; 100(6): 101069, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33848928

RESUMEN

In the United States, all shell eggs processed under the USDA Agricultural Marketing Service voluntary grading standards must receive a shell sanitizing rinse of 100-200 ppm chlorine or its equivalent after leaving the washing process. A study was conducted to determine the concentration of peroxyacetic acid (PAA) which would be equivalent to 100-200 ppm chlorine (Cl) in reducing target organisms under the required washing conditions for shell eggs. Three isolates of Salmonella spp. (Enteritidis, Braenderup, and Typhimurium), as well as Enterobacter cloacae were used as inocula. Sanitizing treatments were negative control; deionized water; 100 and 200 ppm Cl; and 50-500 ppm PAA (7 concentrations). Considering all isolates tested, 100 and 200 ppm chlorine had 2.6 and 2.3 log cfu/mL cultural organisms remaining on shell surface; 50 and 100 ppm peracetic acid had 1.9 and 1.0 log cfu/mL cultural organisms remaining, respectively, compared with untreated control average of 3.8 log cfu/mL (P < 0.001). Salmonella Typhimurium was least resistant to shell sanitizer treatments. Peroxyacetic acid concentrations >250 ppm did not produce significant reductions in microbial populations as PAA concentration increased. Culturing for the prevalence of viable and injured organisms, 400-500 ppm PAA resulted in fewer eggs (P < 0.0001) being positive for Salmonella spp. E. cloacae was culturable via enrichment from 99.4% of inoculated eggs, regardless of sanitizer treatment. The results of this study indicate that 50-100 ppm PAA is equivalent to 100-200 ppm chlorine in reducing egg surface microorganisms. The use of 400-500 ppm PAA resulted in a lower incidence of viable, but not culturable, Salmonella spp. on the shell surface. E. cloacae resulted in almost 100% viable, but not culturable, organism recovery for all sanitizing treatments and should be considered as an indicator organism when studying processing facility sanitation procedures.


Asunto(s)
Desinfectantes , Ácido Peracético , Animales , Pollos , Cloro/farmacología , Recuento de Colonia Microbiana/veterinaria , Desinfectantes/farmacología , Microbiología de Alimentos , Óvulo , Ácido Peracético/farmacología
15.
Brain ; 144(2): 487-503, 2021 03 03.
Artículo en Inglés | MEDLINE | ID: mdl-33257940

RESUMEN

Abnormal phase-amplitude coupling between ß and broadband-γ activities has been identified in recordings from the cortex or scalp of patients with Parkinson's disease. While enhanced phase-amplitude coupling has been proposed as a biomarker of Parkinson's disease, the neuronal mechanisms underlying the abnormal coupling and its relationship to motor impairments in Parkinson's disease remain unclear. To address these issues, we performed an in-depth analysis of high-density EEG recordings at rest in 19 patients with Parkinson's disease and 20 age- and sex-matched healthy control subjects. EEG signals were projected onto the individual cortical surfaces using source reconstruction techniques and separated into spatiotemporal components using independent component analysis. Compared to healthy controls, phase-amplitude coupling of Parkinson's disease patients was enhanced in dorsolateral prefrontal cortex, premotor cortex, primary motor cortex and somatosensory cortex, the difference being statistically significant in the hemisphere contralateral to the clinically more affected side. ß and γ signals involved in generating abnormal phase-amplitude coupling were not strictly phase-phase coupled, ruling out that phase-amplitude coupling merely reflects the abnormal activity of a single oscillator in a recurrent network. We found important differences for couplings between the ß and γ signals from identical components as opposed to those from different components (originating from distinct spatial locations). While both couplings were abnormally enhanced in patients, only the latter were correlated with clinical motor severity as indexed by part III of the Movement Disorder Society Unified Parkinson's Disease Rating Scale. Correlations with parkinsonian motor symptoms of such inter-component couplings were found in premotor, primary motor and somatosensory cortex, but not in dorsolateral prefrontal cortex, suggesting motor domain specificity. The topography of phase-amplitude coupling demonstrated profound differences in patients compared to controls. These findings suggest, first, that enhanced phase-amplitude coupling in Parkinson's disease patients originates from the coupling between distinct neural networks in several brain regions involved in motor control. Because these regions included the somatosensory cortex, abnormal phase-amplitude coupling is not exclusively tied to the hyperdirect tract connecting cortical regions monosynaptically with the subthalamic nucleus. Second, only the coupling between ß and γ signals from different components appears to have pathophysiological significance, suggesting that therapeutic approaches breaking the abnormal lateral coupling between neuronal circuits may be more promising than targeting phase-amplitude coupling per se.


Asunto(s)
Ritmo beta , Corteza Cerebral/fisiopatología , Ritmo Gamma , Enfermedad de Parkinson/fisiopatología , Adulto , Anciano , Electroencefalografía/métodos , Femenino , Humanos , Masculino , Persona de Mediana Edad , Vías Nerviosas/fisiopatología , Cuero Cabelludo , Procesamiento de Señales Asistido por Computador
16.
Poult Sci ; 99(11): 6071-6074, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-33142526

RESUMEN

The transmission of Salmonella to humans via contaminated eggs is an international public health concern. S. Enteritidis is deposited inside eggs after colonizing reproductive tissues of infected hens. Diverse housing facility characteristics and flock management practices influence Salmonella persistence and transmission in poultry, but the food safety consequences of different housing systems for laying hens remain unresolved. The present study compared the horizontal transmission of infection and invasion of internal organs during the first 2 wk after experimental S. Enteritidis and S. Kentucky infection of laying hens in indoor cage-free housing. Groups of 72 hens were housed in isolation rooms simulating commercial cage-free barns, and 1/3 of the hens in each room were orally inoculated with either S. Enteritidis (2 rooms) or S. Kentucky (2 rooms). At 6 d and 12 d postinoculation, 12 inoculated and 24 contact-exposed hens in each room were euthanized, and samples of liver, spleen, ovary, oviduct, and intestinal tract were removed for bacteriologic culturing. All orally inoculated hens were positive for intestinal colonization by S. Enteritidis at 6 d postinfection, and 70.8% of contact-exposed hens had become colonized by 12 d. S. Enteritidis was isolated from 100% of livers and 50.0% of ovaries from inoculated birds at 6 d and from 41.7% of livers and 10.4% of ovaries from contact-exposed birds at 12 d. The majority of both orally inoculated and contact-exposed hens were positive for intestinal colonization by S. Kentucky at 6 d, but S. Kentucky was found in other internal organs of both inoculated and contact-exposed hens significantly (P < 0.05) less often than S. Enteritidis at both sampling intervals. These results indicate that Salmonella infection can spread rapidly and extensively among hens in cage-free indoor housing, including a high frequency of internal organ involvement for invasive S. Enteritidis.


Asunto(s)
Transmisión de Enfermedad Infecciosa , Vivienda para Animales , Enfermedades de las Aves de Corral , Salmonelosis Animal , Animales , Pollos , Transmisión de Enfermedad Infecciosa/veterinaria , Femenino , Enfermedades de las Aves de Corral/microbiología , Enfermedades de las Aves de Corral/transmisión , Salmonella , Salmonelosis Animal/microbiología , Salmonelosis Animal/transmisión , Salmonella enteritidis
17.
Neural Comput ; 32(9): 1615-1634, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32687770

RESUMEN

Bursting plays an important role in neural communication. At the population level, macroscopic bursting has been identified in populations of neurons that do not express intrinsic bursting mechanisms. For the analysis of phase transitions between bursting and non-bursting states, mean-field descriptions of macroscopic bursting behavior are a valuable tool. In this article, we derive mean-field descriptions of populations of spiking neurons and examine whether states of collective bursting behavior can arise from short-term adaptation mechanisms. Specifically, we consider synaptic depression and spike-frequency adaptation in networks of quadratic integrate-and-fire neurons. Analyzing the mean-field model via bifurcation analysis, we find that bursting behavior emerges for both types of short-term adaptation. This bursting behavior can coexist with steady-state behavior, providing a bistable regime that allows for transient switches between synchronized and nonsynchronized states of population dynamics. For all of these findings, we demonstrate a close correspondence between the spiking neural network and the mean-field model. Although the mean-field model has been derived under the assumptions of an infinite population size and all-to-all coupling inside the population, we show that this correspondence holds even for small, sparsely coupled networks. In summary, we provide mechanistic descriptions of phase transitions between bursting and steady-state population dynamics, which play important roles in both healthy neural communication and neurological disorders.


Asunto(s)
Potenciales de Acción/fisiología , Simulación por Computador , Red Nerviosa/fisiología , Redes Neurales de la Computación , Neuronas/fisiología , Humanos , Transmisión Sináptica/fisiología
18.
Avian Dis ; 64(1): 7-15, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-32267120

RESUMEN

Salmonella enterica serovar Enteritidis is the leading cause of salmonellosis in people, and modeling of infections in chickens is used to identify intervention strategies. A review of 80 manuscripts encompassing 119 experiments indicated that the mean dose of infection was 108 CFU per bird. Experiments of less than 106 CFU were primarily conducted in immature birds. To address a lack of information on the impact of low dosages on the hen at lay, two experiments were conducted in triplicate. Experiment A addressed issues associated with vaccination; thus, hens were infected intramuscularly at 103, 105, and 107 CFU. For Experiment B, which was focused more on colonization and invasion, hens were infected orally with 5 × 103 CFU with 4 strains from different genomic clades. Samples from liver, spleen, ovarian pedicle, and paired ceca in both experiments were cultured 5, 6, 7, and 8 days postinfection. Eggshell microbiome taxa were assessed in Experiment B. Results indicated that dosages of 103 CFU in both experiments produced enough positive samples to be used within models. The intramuscular route resulted in approximately twice as many positive samples as the oral route. The kinetics of infection appeared to differ between low and high dosages suggestive of a J-curve response. These results could impact risk assessments if the hen at lay has a nonlinear response to infectious dose.


Infección por dosis baja en gallinas de postura con Salmonella enterica Serovar Enteritidis de diferentes clados genómicos. Salmonella enterica serovar Enteritidis es la principal causa de salmonelosis en las personas y el modelo de infecciones en pollos se utiliza para identificar estrategias de intervención. Una revisión de 80 manuscritos que abarca 119 experimentos indicó que la dosis media de infección fue de 108 unidades formadoras de colonias (UFC) por ave. Los experimentos de menos de 106 UFC se realizaron principalmente en aves inmaduras. Para abordar la falta de información sobre el impacto de las dosis bajas en gallinas de postura, se realizaron dos experimentos por triplicado. El experimento A abordó los problemas asociados con la vacunación; así, las gallinas se infectaron por vía intramuscular con 103, 105 y 107 UFC. Para el Experimento B, que se enfocó más en la colonización y la invasión, las gallinas se infectaron por vía oral con 5×103 UFC con 4 cepas de diferentes clados genómicos. Las muestras de hígado, bazo, pedículo ovárico y pares de sacos ciegos se cultivaron en ambos experimentos a los cinco, seis, siete y ocho días después de la infección. Los taxones del microbioma del cascarón de huevo se evaluaron en el Experimento B. Los resultados indicaron que las dosis de 103 UFC en ambos experimentos produjeron suficientes muestras positivas para ser utilizadas dentro de los modelos. La ruta intramuscular dio como resultado aproximadamente el doble de muestras positivas que la ruta oral. La cinética de la infección parece diferir entre las dosis bajas y altas que sugieren una respuesta tipo curva J. Estos resultados podrían afectar las evaluaciones de riesgo si las gallinas de postura tienen una respuesta no lineal a la dosis infecciosa.


Asunto(s)
Pollos , Enfermedades de las Aves de Corral/microbiología , Salmonelosis Animal/microbiología , Salmonella enteritidis/fisiología , Animales , Ciego/microbiología , Femenino , Genoma Bacteriano , Hígado/microbiología , Ovario/microbiología , Reproducción , Salmonella enteritidis/genética , Bazo/microbiología
19.
J Food Prot ; 83(6): 943-950, 2020 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-32027739

RESUMEN

ABSTRACT: Environmental testing for Salmonella Enteritidis is required for U.S. shell egg producers with ≥3,000 hens on a farm. The egg producer assumes all costs for the mandatory testing. According to the U.S. Food and Drug Administration (FDA) Egg Rule, either manure scraper or drag swabs can be collected according to published guidelines and requirements. The present study was undertaken to determine the efficacy of Salmonella detection with one-, two-, and four-swab pools of either manure scraper or drag swabs. Resistant isolates of Salmonella serovars Enteritidis (1,000 ppm of streptomycin), Heidelberg (200 ppm of nalidixic acid [NA]), Typhimurium (200 ppm of NA), and Kentucky (200 ppm of NA) were utilized. Low (approximately 8.4 CFU) and high (approximately 84 CFU) levels of inocula were introduced onto a single swab within a pool. Single flocks from each conventional cage (manure scraper swabs) and cage-free barn (drag swabs) were monitored throughout the study at the ages required under the FDA Egg Rule. The highest and most consistent recovery of inoculum was found in single swab samples. For low dose inocula, recovery of isolates was low from single manure scraper swabs (57.9 to 29.2%) and decreased as more swabs were added to the pool. Recovery of isolates from manure scraper swabs was higher for high dose inocula, although Salmonella Heidelberg was outcompeted by the naturally occurring flora and had the lowest rate of recovery among the isolates tested. One- and two-swab pools of drag swabs had similar rates of recovery at both low and high doses for Salmonella Enteritidis, Salmonella Heidelberg, and Salmonella Typhimurium. When Salmonella Enteritidis and Salmonella Kentucky were combined in an inoculum, Salmonella Enteritidis was recovered at a much higher rate than was Salmonella Kentucky for all types of swabs and doses of inocula. Pooling of two drag swabs allowed for similar detection of low and high dose Salmonella, but the pooling of manure scraper swabs decreased detection of low dose Salmonella.


Asunto(s)
Enfermedades de las Aves de Corral , Salmonelosis Animal , Animales , Pollos , Femenino , Vivienda para Animales , Kentucky , Salmonelosis Animal/diagnóstico , Salmonella enteritidis
20.
PLoS Comput Biol ; 15(12): e1007551, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31841504

RESUMEN

Dynamic communication and routing play important roles in the human brain in order to facilitate flexibility in task solving and thought processes. Here, we present a network perturbation methodology that allows investigating dynamic switching between different network pathways based on phase offsets between two external oscillatory drivers. We apply this method in a computational model of the human connectome with delay-coupled neural masses. To analyze dynamic switching of pathways, we define four new metrics that measure dynamic network response properties for pairs of stimulated nodes. Evaluating these metrics for all network pathways, we found a broad spectrum of pathways with distinct dynamic properties and switching behaviors. We show that network pathways can have characteristic timescales and thus specific preferences for the phase lag between the regions they connect. Specifically, we identified pairs of network nodes whose connecting paths can either be (1) insensitive to the phase relationship between the node pair, (2) turned on and off via changes in the phase relationship between the node pair, or (3) switched between via changes in the phase relationship between the node pair. Regarding the latter, we found that 33% of node pairs can switch their communication from one pathway to another depending on their phase offsets. This reveals a potential mechanistic role that phase offsets and coupling delays might play for the dynamic information routing via communication pathways in the brain.


Asunto(s)
Conectoma , Modelos Neurológicos , Red Nerviosa/fisiología , Encéfalo/anatomía & histología , Encéfalo/fisiología , Comunicación , Biología Computacional , Simulación por Computador , Conectoma/estadística & datos numéricos , Humanos , Red Nerviosa/anatomía & histología , Redes Neurales de la Computación , Vías Nerviosas/anatomía & histología , Vías Nerviosas/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA