Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Environ Technol ; 45(10): 2022-2033, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36576790

RESUMEN

TiO2/C nanocomposite films were applied on water treatment. Expanded graphite nanosheets (EG) were obtained by UVC-assisted liquid-phase exfoliation technique, without the addition of acids, surfactants, or aggressive oxidizing agents, which characterizes the process as an eco-friendly method. The carbon nanosheets were synthesized directly from graphite bulk at different times and deposited on TiO2 films surface by airbrush spray coating method, forming a TiO2/C heterojunction. The increase in the exfoliation time promoted a more efficient photocatalytic dye removal under visible light. Morphological modifications, changes in the electronic structure, and wide range of light absorption were observed from the TiO2/C heterojunction formation. The results showed that hybrid TiO2/C supported photocatalyst is a promise alternative for practical photocatalytic applications under sunlight.


Asunto(s)
Grafito , Nanocompuestos , Grafito/química , Titanio/química , Luz Solar , Nanocompuestos/química
2.
J Control Release ; 350: 228-243, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35995297

RESUMEN

Vectorized small interfering RNAs (siRNAs) are widely used to induce gene silencing. Among the delivery systems used, lipid-based particles are the most effective. Our objective was the development of novel lipid-polymer hybrid nanoparticles, from lipoplexes (complexes of cationic lipid and siRNAs), and poly (lactic-co-glycolic acid) (PLGA), using a simple modified nanoprecipitation method. Due to their morphology, we called these hybrid nanoparticles Spheroplexes. We elucidated their structure using several physico-chemical techniques and showed that they are composed of a hydrophobic PLGA matrix, surrounded by a lipid envelope adopting a lamellar structure, in which the siRNA is complexed, and they retain surface characteristics identical to the starting nanoparticles, i.e. lipoplexes siRNA. We analyzed the composition of the particle population and determined the final percentage of spheroplexes within this population, 80 to 85% depending on the preparation conditions, using fluorescent markers and the ability of flow cytometry to detect nanometric particles (approximately 200 nm). Finally, we showed that spheroplexes are very stable particles and more efficient than siRNA lipoplexes for the delivery of siRNA to cultured cells. We administered spheroplexes contain siRNAs targeting TNF-α to mice with ulcerative colitis induced by dextran sulfate and our results indicate a disease regression effect with a response probably mediated by their uptake by macrophages / monocytes at the level of lamina propria of the colon. The efficacy of decreased level of TNF-α in vivo seemed to be an association of spheroplexes polymer-lipid composition and the specific siRNA. These results demonstrate that spheroplexes are a promising hybrid nanoparticle for the oral delivery of siRNA to the colon.


Asunto(s)
Nanopartículas , Factor de Necrosis Tumoral alfa , Animales , Cationes/química , Sulfato de Dextran , Lípidos/química , Liposomas , Ratones , Nanopartículas/química , Polímeros/química , ARN Interferente Pequeño
3.
World J Microbiol Biotechnol ; 38(2): 33, 2022 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-34989895

RESUMEN

The goal of this work is use a green chemistry route to synthesize selenium nanoparticles (SeNPs) that do not trigger oxidative stress, typical of metallic, oxide metallic and carbonaceous nanostructures, and supply the same beneficial effects as selenium nanostructures. SeNPs were synthesized using a radiolytic method involving irradiating a solution containing sodium selenite (Se4+) as the precursor in 1% Yeast extract, 2% Peptone, 2% Glucose (YPG) liquid medium with gamma-rays (60Cobalt). The method did not employ any hazardous reducing agents. Saccharomyces cerevisiae cells were incubated with 1 mM SeNPs for 24 h and/or then challenged with 400 Gy of ionizing radiation were assessed for viability and biomarkers of oxidative stress: lipid peroxidation, protein carbonylation, free radical generation, and total sulfhydryl content. Spherical SeNPs with variable diameters (from 100 to 200 nm) were formed after reactions of sodium selenite with hydrated electrons (eaq-) and hydrogen radicals (H·). Subsequent structural characterizations indicated an amorphous structure composed of elemental selenium (Se0). Compared to 1 mM selenite, SeNPs were considered safe and less toxic to Saccharomyces cerevisiae cells as did not elicit significant modifications in cell viability or oxidative stress parameters except for increased protein carbonylation. Furthermore, SeNPs treatment afforded some protection against ionizing radiation exposure. SeNPs produced using green chemistry attenuated the reactive oxygen species generation after in vitro ionizing radiation exposure opens up tremendous possibilities for radiosensitizer development.


Asunto(s)
Contención de Riesgos Biológicos , Nanopartículas/química , Radiación Ionizante , Ácido Selenioso/química , Selenio/química , Supervivencia Celular/efectos de los fármacos , Nanopartículas del Metal/química , Estrés Oxidativo , Saccharomyces cerevisiae/efectos de los fármacos , Saccharomyces cerevisiae/metabolismo , Selenito de Sodio , Compuestos de Sulfhidrilo
4.
Nanotechnology ; 32(50)2021 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-34547742

RESUMEN

Gold nanoparticles have been widely investigated for biomedical applications due to their optical properties. These particles present the interesting feature of absorbing light when stimulated with laser radiation to generate heating. Among the possible morphologies for synthetic gold nanoparticles, gold nanorods have properties of great interest for applications in the photohyperthermia processes. Due to their morphology, gold nanorods can absorb light at longer wavelengths comprising specific regions of the electromagnetic spectrum, such as the region of the biological window, in which laser radiation has less interaction with tissues. However, these nanoparticles present limitations in biomedical applications, such as low colloidal and thermal stabilities that can be overcome by coating the gold nanorods with silica MCM-41. The silicate covering can provide greater stability for gold nanorods and allow multifunctionality in treating different diseases through photohyperthermia. This work developed a specific chemical route through seed and growth solutions to synthesize gold nanorods with controlled particle size, rod morphology, and silica covering for photohyperthermia applications. The synthesized samples were characterized through a multi-technique approach that successfully demonstrated the presence of gold nanorods inside the silica coating, presenting high stability and desirable textural and morphological characteristics for bioapplications. Furthermore, silica-coated gold nanorods exhibit high biocompatibility and great performance in generating therapeutic heating by absorbing laser radiation in the biological window range, making the system developed in this work a promising agent in photohyperthermia.

5.
Nanomaterials (Basel) ; 11(8)2021 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-34443806

RESUMEN

The detailed study of graphene oxide (GO) synthesis by changing the graphite/oxidizing reagents mass ratios (mG/mROxi), provided GO nanosheets production with good yield, structural quality, and process savings. Three initial samples containing different amounts of graphite (3.0 g, 4.5 g, and 6.0 g) were produced using a bench reactor under strictly controlled conditions to guarantee the process reproducibility. The produced samples were analyzed by Raman spectroscopy, atomic force microscopy (AFM), x-ray diffraction (XDR), X-ray photoelectron spectroscopy (XPS), Fourier-transform infrared spectroscopy (FTIR) and thermogravimetry (TGA) techniques. The results showed that the major GO product comprised of nanosheets containing between 1-5 layers, with lateral size up to 1.8 µm. Therefore, it was possible to produce different batches of graphene oxide with desirable physicochemical characteristics, keeping the amount of oxidizing reagent unchanged. The use of different proportions (mG/mROxi) is an important strategy that provides to produce GO nanostructures with high structural quality and scale-up, which can be well adapted in medium-sized bench reactor.

6.
Appl Radiat Isot ; 157: 109032, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-32063327

RESUMEN

Boron nitride nanotubes (BNNTs) have been growing in notoriety in the development of systems aiming bioapplications. In this work we conducted an investigation about the mechanisms involved in the incorporation of samarium and gadolinium in BNNTs. The process was performed by the reduction of samarium and gadolinium oxides (Sm2O3 and Gd2O3, respectively) in the presence of NH3 gas (witch decomposes into N2 and H2) at high temperatures. Various characterization techniques were conducted to elucidate how Sm and Gd are introduced into the BNNT structure. Biological in vitro assays were performed with human fibroblasts and a human osteosarcoma cell line (SAOS-2). Our results show that the studied systems have high potential for biomedical application and can be used as non-invasive imaging agents, such as scintigraphy radiotracers or as magnetic resonance imaging (MRI) contrast medium, being able to promote the treatment of many types of tumors simultaneously to their diagnosis.


Asunto(s)
Compuestos de Boro/química , Gadolinio/química , Nanomedicina , Nanotubos/química , Óxidos/química , Samario/química , Línea Celular , Humanos
7.
J Mater Sci Mater Med ; 29(8): 130, 2018 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-30074096

RESUMEN

The development of a myriad of nanoparticles types has opened new possibilities for the diagnostics and treatment of many diseases, especially for cancer. However, most of the researches done so far do not focus on the protection of normal cells surrounding a tumor from irradiation bystander effects that might lead to cancer recurrence. Gap-junctions are known to be involved in this process, which leads to genomic instability of neighboring normal cells, and flufenamic acid (FFA) is included in a new group of gap-junction blockers recently discovered. The present work explores the use of mesoporous silica nanoparticles MCM-41 functionalized with 3-Aminopropyltriethoxysilane (APTES) for anchoring the flufenamic acid for its prolonged and controlled release and protection from radiation bystander effects. MCM-41 and functionalized samples were structurally and chemically characterized with multiple techniques. The biocompatibility of all samples was tested in a live/dead assay performed in cultured MRC-5 and HeLa cells. HeLa cells cultured were exposed to 50 Gy of gamma-rays and the media transferred to fibroblast cells cultured separately. Our results show that MCM-41 and functionalized samples have high biocompatibility with MCR-5 and HeLa cells, and most importantly, the FFA delivered by these NPs was able to halt apoptosis, one of main bystander effects.


Asunto(s)
Efecto Espectador/efectos de la radiación , Ácido Flufenámico/química , Ácido Flufenámico/farmacología , Nanopartículas/química , Dióxido de Silicio/química , Dióxido de Silicio/farmacología , Efecto Espectador/efectos de los fármacos , Línea Celular , Fibroblastos/efectos de los fármacos , Fibroblastos/efectos de la radiación , Rayos gamma/efectos adversos , Humanos , Ensayo de Materiales , Microscopía Electrónica de Rastreo
8.
J Phys Condens Matter ; 28(42): 425001, 2016 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-27589202

RESUMEN

The influence of interface exchange coupling on magnetic anisotropy in the antiferromagnetic oxide/Ni system is investigated. We show how interfacial exchange coupling can be employed not only to pin the magnetization of the ferromagnetic layer but also to support magnetic anisotropy to orient the easy magnetization axis perpendicular to the film plane. The fact that this effect is only observed below the Néel temperature of all investigated antiferromagnetic oxides with significantly different magnetocrystalline anisotropies gives evidence that antiferromagnetic ordering is a source of the additional contribution to the perpendicular effective magnetic anisotropy.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...