Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Microb Cell Fact ; 23(1): 253, 2024 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-39300466

RESUMEN

BACKGROUND: The market for beverages is highly changing within the last years. Increasing consumer awareness towards healthier drinks led to the revival of traditional and the creation of innovative beverages. Various protein-rich legumes were used for milk analogues, which might be also valuable raw materials for refreshing, protein-rich beverages. However, no such applications have been marketed so far, which might be due to unpleasant organoleptic impressions like the legume-typical "beany" aroma. Lactic acid fermentation has already been proven to be a remedy to overcome this hindrance in consumer acceptance. RESULTS: In this study, a statistically based approach was used to elucidate the impact of the fermentation parameters temperature, inoculum cell concentration, and methionine addition on the fermentation of lupine- and faba bean-based substrates. A total of 39 models were found and verified. The majority of these models indicate a strong impact of the temperature on the reduction of aldehydes connected to the "beany" impression (e.g., hexanal) and on the production of pleasantly perceived aroma compounds (e.g., ß-damascenone). Positively, the addition of methionine had only minor impacts on the negatively associated sulfuric compounds methional, dimethyl sulfide, dimethyl disulfide, and dimethyl trisulfide. Moreover, in further fermentations, the time was added as an additional parameter. It was shown that the strains grew well, strongly acidified the both substrates (pH ≤ 4.0) within 6.5 h, and reached cell counts of > 9 log10 CFU/mL after 24 h. Notably, most of the aldehydes (like hexanal) were reduced within the first 6-7 h, whereas pleasant compounds like ß-damascenone reached high concentrations especially in the later fermentation (approx. 24-48 h). CONCLUSIONS: Out of the fermentation parameters temperature, inoculum cell concentration, and methionine addition, the temperature had the highest influence on the observed aroma and taste active compounds. As the addition of methionine to compensate for the legume-typical deficit did not lead to an adverse effect, fortifying legume-based substrates with methionine should be considered to improve the bioavailability of the legume protein. Aldehydes, which are associated with the "beany" aroma impression, can be removed efficiently in fermentation. However, terminating the process prematurely would lead to an incomplete production of pleasant aroma compounds.


Asunto(s)
Fermentación , Ácido Láctico , Ácido Láctico/metabolismo , Bebidas/análisis , Metionina/metabolismo , Fabaceae/metabolismo , Temperatura , Odorantes/análisis , Lupinus/metabolismo
2.
Compr Rev Food Sci Food Saf ; 21(5): 4018-4055, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35876639

RESUMEN

Lupines and faba beans are promising ingredients for the beverage industry. They contain high amounts of protein and can be grown in different climate zones and agricultural areas. Therefore, these legumes appear as ideal raw material for vegan, functional, and sustainable beverages. Nevertheless, the sensory characteristic of legumes is generally not accepted in beverages. Therefore, the market contribution of legume-based beverages is currently only marginal. This review highlights known major flavor aspects of lupines and faba beans and the possibilities to improve these by germination, heat treatment, enzymatic treatment, and subsequent lactic acid fermentation. First, the main aroma and taste compounds are described. Thereby, the "beany" aroma is identified as the most relevant off-flavor. Second, the nutrients and antinutrients of these legumes regarding to their use as food and as substrate for lactic acid fermentation are reviewed, and possibilities to modulate the substrate are summarized. Finally, the modification of the sensory profile by lactic acid fermentation is outlined. To conclude, it seems likely that the nutritional and flavor attributes in legume-based beverages can be improved by a combined process of substrate modulation and fermentation. In a first step, antinutrients should be decomposed and proteins solubilized while transforming the solid grains into a liquid substrate. Due to such substrate modulation, a broader variety of strains could be employed and the fermentation could be based exclusively on their impact on the flavor. By applying the concept of combining a substrate modulation with a subsequent fermentation, the use of legumes in beverages could be facilitated and new products like vegan, protein-rich, refreshing beverages could be marketed.


Asunto(s)
Lupinus , Vicia faba , Bebidas , Fermentación , Ácido Láctico/análisis , Ácido Láctico/metabolismo , Verduras , Vicia faba/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA