Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 14(1): 9883, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38688980

RESUMEN

Experiments as Code (ExaC) is a concept for reproducible, auditable, debuggable, reusable, & scalable experiments. Experiments are a crucial tool to understand Human-Building Interactions (HBI) and build a coherent theory around it. However, a common concern for experiments is their auditability and reproducibility. Experiments are usually designed, provisioned, managed, and analyzed by diverse teams of specialists (e.g., researchers, technicians, engineers) and may require many resources (e.g., cloud infrastructure, specialized equipment). Although researchers strive to document experiments accurately, this process is often lacking. Consequently, it is difficult to reproduce these experiments. Moreover, when it is necessary to create a similar experiment, the "wheel is very often reinvented". It appears easier to start from scratch than trying to reuse existing work. Thus valuable embedded best practices and previous experiences are lost. In behavioral studies, such as in HBI, this has contributed to the reproducibility crisis. To tackle these challenges, we propose the ExaC paradigm, which not only documents the whole experiment, but additionally provides the automation code to provision, deploy, manage, and analyze the experiment. To this end, we define the ExaC concept, provide a taxonomy for the components of a practical implementation, and provide a proof of concept with an HBI desktop VR experiment that demonstrates the benefits of its "as code" representation, that is, reproducibility, auditability, debuggability, reusability, & scalability.

2.
Sci Rep ; 14(1): 3735, 2024 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-38355942

RESUMEN

In this paper, we explore the mutual effect of prior background expectations and visibility afforded by the 3D configuration of the physical environment on wayfinding efficiency and strategy in multilevel buildings. We perform new analyses on data from 149 participants who performed six unaided and directed wayfinding tasks in virtual buildings with varying degrees of visibility. Our findings reveal that the interaction between visibility and prior background expectations significantly affects wayfinding efficiency and strategy during between-floor wayfinding tasks. We termed this interaction effect strategic visibility, which emphasizes the importance of the strategic allocation of visibility towards actionable building elements in promoting efficient wayfinding and shaping wayfinding strategy. Our study highlights the significance of strategic visibility in promoting inclusive and accessible built environments for neurodiversity. Finally, we provide an open-source dataset that can be used to develop and test new wayfinding theories and models to advance research in the emerging field of human-building interaction.

4.
Sci Rep ; 11(1): 18980, 2021 09 23.
Artículo en Inglés | MEDLINE | ID: mdl-34556777

RESUMEN

Visibility is the degree to which different parts of the environment can be observed from a given vantage point. In the absence of previous familiarity or signage, the visibility of key elements in a multilevel environment (e.g., the entrance, exit, or the destination itself) becomes a primary input to make wayfinding decisions and avoid getting lost. Previous research has focused on memory-based wayfinding and mental representation of 3D space, but few studies have investigated the direct effects of visibility on wayfinding. Moreover, to our knowledge, there are no studies that have explicitly observed the interaction between visibility and wayfinding under uncertainty in a multilevel environment. To bridge this gap, we studied how the visibility of destinations, as well as the continuity of sight-lines along the vertical dimension, affects unaided and goal-directed wayfinding behavior in a multilevel desktop Virtual Reality (VR) study. We obtained results from a total of 69 participants. Each participant performed a total of 24 wayfinding trials in a multilevel environment. Results showcase a significant and nonlinear correlation between the visibility of destinations and wayfinding behavioral characteristics. Specifically, once the destination was in sight, regardless of whether it was highly or barely visible, participants made an instantaneous decision to switch floors and move up towards the destination. In contrast, if the destination was out-of-sight, participants performed 'visual exploration', indicated by an increase in vertical head movements and greater time taken to switch floors. To demonstrate the direct applicability of this fundamental wayfinding behavioral pattern, we formalize these results by modeling a visibility-based cognitive agent. Our results show that by modeling the transition between exploration and exploitation as a function of visibility, cognitive agents were able to replicate human wayfinding patterns observed in the desktop VR study. This simple demonstration shows the potential of extending our main findings concerning the nonlinear relationship between visibility and wayfinding to inform the modeling of human cognition.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...