Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 78
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Biol Chem ; 300(3): 105739, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38342435

RESUMEN

The p90 ribosomal S6 kinases (RSK) family of serine/threonine kinases comprises four isoforms (RSK1-4) that lie downstream of the ERK1/2 mitogen-activated protein kinase pathway. RSKs are implicated in fine tuning of cellular processes such as translation, transcription, proliferation, and motility. Previous work showed that pathogens such as Cardioviruses could hijack any of the four RSK isoforms to inhibit PKR activation or to disrupt cellular nucleocytoplasmic trafficking. In contrast, some reports suggest nonredundant functions for distinct RSK isoforms, whereas Coffin-Lowry syndrome has only been associated with mutations in the gene encoding RSK2. In this work, we used the analog-sensitive kinase strategy to ask whether the cellular substrates of distinct RSK isoforms differ. We compared the substrates of two of the most distant RSK isoforms: RSK1 and RSK4. We identified a series of potential substrates for both RSKs in cells and validated RanBP3, PDCD4, IRS2, and ZC3H11A as substrates of both RSK1 and RSK4, and SORBS2 as an RSK1 substrate. In addition, using mutagenesis and inhibitors, we confirmed analog-sensitive kinase data showing that endogenous RSKs phosphorylate TRIM33 at S1119. Our data thus identify a series of potential RSK substrates and suggest that the substrates of RSK1 and RSK4 largely overlap and that the specificity of the various RSK isoforms likely depends on their cell- or tissue-specific expression pattern.


Asunto(s)
Proteínas Quinasas S6 Ribosómicas 90-kDa , Especificidad por Sustrato , Humanos , Sistema de Señalización de MAP Quinasas , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Fosforilación , Isoformas de Proteínas/antagonistas & inhibidores , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Proteínas Quinasas S6 Ribosómicas 90-kDa/antagonistas & inhibidores , Proteínas Quinasas S6 Ribosómicas 90-kDa/química , Proteínas Quinasas S6 Ribosómicas 90-kDa/genética , Proteínas Quinasas S6 Ribosómicas 90-kDa/metabolismo , Reproducibilidad de los Resultados , Mutagénesis
2.
BMC Bioinformatics ; 25(1): 80, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38378440

RESUMEN

BACKGROUND: With the increase of the dimensionality in flow cytometry data over the past years, there is a growing need to replace or complement traditional manual analysis (i.e. iterative 2D gating) with automated data analysis pipelines. A crucial part of these pipelines consists of pre-processing and applying quality control filtering to the raw data, in order to use high quality events in the downstream analyses. This part can in turn be split into a number of elementary steps: signal compensation or unmixing, scale transformation, debris, doublets and dead cells removal, batch effect correction, etc. However, assembling and assessing the pre-processing part can be challenging for a number of reasons. First, each of the involved elementary steps can be implemented using various methods and R packages. Second, the order of the steps can have an impact on the downstream analysis results. Finally, each method typically comes with its specific, non standardized diagnostic and visualizations, making objective comparison difficult for the end user. RESULTS: Here, we present CytoPipeline and CytoPipelineGUI, two R packages to build, compare and assess pre-processing pipelines for flow cytometry data. To exemplify these new tools, we present the steps involved in designing a pre-processing pipeline on a real life dataset and demonstrate different visual assessment use cases. We also set up a benchmarking comparing two pre-processing pipelines differing by their quality control methods, and show how the package visualization utilities can provide crucial user insight into the obtained benchmark metrics. CONCLUSION: CytoPipeline and CytoPipelineGUI are two Bioconductor R packages that help building, visualizing and assessing pre-processing pipelines for flow cytometry data. They increase productivity during pipeline development and testing, and complement benchmarking tools, by providing user intuitive insight into benchmarking results.


Asunto(s)
Análisis de Datos , Programas Informáticos , Citometría de Flujo/métodos
3.
PLoS One ; 18(11): e0294982, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38033011

RESUMEN

AIMS: To evaluate whether parameters of post-hypoglycemic hyperglycemia (PHH) correlated with glucose homeostasis during the first year after type 1 diabetes onset and helped to distinguish pediatric patients undergoing partial remission or not. METHODS: In the GLUREDIA (GLUcagon Response to hypoglycemia in children and adolescents with new-onset type 1 DIAbetes) study, longitudinal values of clinical parameters, continuous glucose monitoring metrics and residual ß-cell secretion from children with new-onset type 1 diabetes were analyzed during the first year after disease onset. PHH parameters were calculated using an in-house algorithm. Correlations between PHH parameters (i.e., PHH frequency, PHH duration, PHH area under the curve [PHHAUC]) and glycemic homeostasis markers were studied using adjusted mixed-effects models. RESULTS: PHH parameters were strong markers to differentiate remitters from non-remitters with PHH/Hyperglycemia duration ratio being the most sensitive (ratio<0.02; sensitivity = 86% and specificity = 68%). PHHAUC moderately correlated with parameters of glucose homeostasis including TIR (R2 = 0.35, p-value < 0.05), coefficient of variation (R2 = 0.22, p-value < 0.05) and Insulin-Dose Adjusted A1c (IDAA1C) (R2 = 0.32, p-value < 0.05) and with residual ß-cell secretion (R2 = 0.17, p-value < 0.05). Classification of patients into four previously described glucotypes independently validated PHH parameters as reliable markers of glucose homeostasis and improved the segregation of patients with intermediate values of IDAA1C and estimated C-peptide (CPEPEST). Finally, a combination of PHH parameters identified groups of patients with specific patterns of hypoglycemia. CONCLUSION: PHH parameters are new minimal-invasive markers to discriminate remitters from non-remitters and evaluate glycemic homeostasis during the first year of type 1 diabetes. PHH parameters may also allow patient-targeted therapeutic management of hypoglycemic episodes.


Asunto(s)
Diabetes Mellitus Tipo 1 , Hiperglucemia , Hipoglucemia , Adolescente , Humanos , Niño , Hipoglucemiantes/uso terapéutico , Diabetes Mellitus Tipo 1/complicaciones , Diabetes Mellitus Tipo 1/tratamiento farmacológico , Automonitorización de la Glucosa Sanguínea , Glucemia , Insulina/uso terapéutico , Hiperglucemia/tratamiento farmacológico , Hipoglucemia/tratamiento farmacológico
4.
J Proteome Res ; 22(9): 2775-2784, 2023 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-37530557

RESUMEN

Missing values are a notable challenge when analyzing mass spectrometry-based proteomics data. While the field is still actively debating the best practices, the challenge increased with the emergence of mass spectrometry-based single-cell proteomics and the dramatic increase in missing values. A popular approach to deal with missing values is to perform imputation. Imputation has several drawbacks for which alternatives exist, but currently, imputation is still a practical solution widely adopted in single-cell proteomics data analysis. This perspective discusses the advantages and drawbacks of imputation. We also highlight 5 main challenges linked to missing value management in single-cell proteomics. Future developments should aim to solve these challenges, whether it is through imputation or data modeling. The perspective concludes with recommendations for reporting missing values, for reporting methods that deal with missing values, and for proper encoding of missing values.


Asunto(s)
Proteómica , Análisis de la Célula Individual , Proteómica/métodos , Espectrometría de Masas/métodos , Algoritmos
5.
PLoS Comput Biol ; 19(8): e1011324, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37624866

RESUMEN

BACKGROUND: The majority of high-throughput single-cell molecular profiling methods quantify RNA expression; however, recent multimodal profiling methods add simultaneous measurement of genomic, proteomic, epigenetic, and/or spatial information on the same cells. The development of new statistical and computational methods in Bioconductor for such data will be facilitated by easy availability of landmark datasets using standard data classes. RESULTS: We collected, processed, and packaged publicly available landmark datasets from important single-cell multimodal protocols, including CITE-Seq, ECCITE-Seq, SCoPE2, scNMT, 10X Multiome, seqFISH, and G&T. We integrate data modalities via the MultiAssayExperiment Bioconductor class, document and re-distribute datasets as the SingleCellMultiModal package in Bioconductor's Cloud-based ExperimentHub. The result is single-command actualization of landmark datasets from seven single-cell multimodal data generation technologies, without need for further data processing or wrangling in order to analyze and develop methods within Bioconductor's ecosystem of hundreds of packages for single-cell and multimodal data. CONCLUSIONS: We provide two examples of integrative analyses that are greatly simplified by SingleCellMultiModal. The package will facilitate development of bioinformatic and statistical methods in Bioconductor to meet the challenges of integrating molecular layers and analyzing phenotypic outputs including cell differentiation, activity, and disease.


Asunto(s)
Ecosistema , Proteómica , Diferenciación Celular , Biología Computacional , Epigenómica
6.
Microbiome ; 11(1): 138, 2023 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-37408070

RESUMEN

BACKGROUND: Following solid organ transplantation, tacrolimus (TAC) is an essential drug in the immunosuppressive strategy. Its use constitutes a challenge due to its narrow therapeutic index and its high inter- and intra-pharmacokinetic (PK) variability. As the contribution of the gut microbiota to drug metabolism is now emerging, it might be explored as one of the factors explaining TAC PK variability. Herein, we explored the consequences of TAC administration on the gut microbiota composition. Reciprocally, we studied the contribution of the gut microbiota to TAC PK, using a combination of in vivo and in vitro models. RESULTS: TAC oral administration in mice resulted in compositional alterations of the gut microbiota, namely lower evenness and disturbance in the relative abundance of specific bacterial taxa. Compared to controls, mice with a lower intestinal microbial load due to antibiotics administration exhibit a 33% reduction in TAC whole blood exposure and a lower inter-individual variability. This reduction in TAC levels was strongly correlated with higher expression of the efflux transporter ABCB1 (also known as the p-glycoprotein (P-gp) or the multidrug resistance protein 1 (MDR1)) in the small intestine. Conventionalization of germ-free mice confirmed the ability of the gut microbiota to downregulate ABCB1 expression in a site-specific fashion. The functional inhibition of ABCB1 in vivo by zosuquidar formally established the implication of this efflux transporter in the modulation of TAC PK by the gut microbiota. Furthermore, we showed that polar bacterial metabolites could recapitulate the transcriptional regulation of ABCB1 by the gut microbiota, without affecting its functionality. Finally, whole transcriptome analyses pinpointed, among others, the Constitutive Androstane Receptor (CAR) as a transcription factor likely to mediate the impact of the gut microbiota on ABCB1 transcriptional regulation. CONCLUSIONS: We highlight for the first time how the modulation of ABCB1 expression by bacterial metabolites results in changes in TAC PK, affecting not only blood levels but also the inter-individual variability. More broadly, considering the high number of drugs with unexplained PK variability transported by ABCB1, our work is of clinical importance and paves the way for incorporating the gut microbiota in prediction algorithms for dosage of such drugs. Video Abstract.


Asunto(s)
Microbioma Gastrointestinal , Tacrolimus , Animales , Ratones , Tacrolimus/farmacocinética , Citocromo P-450 CYP3A , Inmunosupresores/farmacocinética , Subfamilia B de Transportador de Casetes de Unión a ATP/genética , Miembro 1 de la Subfamilia B de Casetes de Unión a ATP , Proteínas de Transporte de Membrana
7.
J Biol Chem ; 299(9): 105095, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37507022

RESUMEN

Many transcripts are targeted by nonsense-mediated decay (NMD), leading to their degradation and the inhibition of their translation. We found that the protein SUZ domain-containing protein 1 (SZRD1) interacts with the key NMD factor up-frameshift 1. When recruited to NMD-sensitive reporter gene transcripts, SZRD1 increased protein production, at least in part, by relieving translational inhibition. The conserved SUZ domain in SZRD1 was required for this effect. The SUZ domain is present in only three other human proteins besides SZRD1: R3H domain-containing protein 1 and 2 (R3HDM1, R3HDM2) and cAMP-regulated phosphoprotein 21 (ARPP21). We found that ARPP21, similarly to SZRD1, can increase protein production from NMD-sensitive reporter transcripts in an SUZ domain-dependent manner. This indicated that the SUZ domain-containing proteins could prevent translational inhibition of transcripts targeted by NMD. Consistent with the idea that SZRD1 mainly prevents translational inhibition, we did not observe a systematic decrease in the abundance of NMD targets when we knocked down SZRD1. Surprisingly, knockdown of SZRD1 in two different cell lines led to reduced levels of the NMD component UPF3B, which was accompanied by increased levels in a subset of NMD targets. This suggests that SZRD1 is required to maintain normal UPF3B levels and indicates that the effect of SZRD1 on NMD targets is not limited to a relief from translational inhibition. Overall, our study reveals that human SUZ domain-containing proteins play a complex role in regulating protein output from transcripts targeted by NMD.


Asunto(s)
Degradación de ARNm Mediada por Codón sin Sentido , Proteínas de Unión al ARN , Humanos , Línea Celular , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Dominios Proteicos , Células HeLa , Células HEK293
8.
Development ; 150(16)2023 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-37497580

RESUMEN

Earlier data on liver development demonstrated that morphogenesis of the bile duct, portal mesenchyme and hepatic artery is interdependent, yet how this interdependency is orchestrated remains unknown. Here, using 2D and 3D imaging, we first describe how portal mesenchymal cells become organised to form hepatic arteries. Next, we examined intercellular signalling active during portal area development and found that axon guidance genes are dynamically expressed in developing bile ducts and portal mesenchyme. Using tissue-specific gene inactivation in mice, we show that the repulsive guidance molecule BMP co-receptor A (RGMA)/neogenin (NEO1) receptor/ligand pair is dispensable for portal area development, but that deficient roundabout 2 (ROBO2)/SLIT2 signalling in the portal mesenchyme causes reduced maturation of the vascular smooth muscle cells that form the tunica media of the hepatic artery. This arterial anomaly does not impact liver function in homeostatic conditions, but is associated with significant tissular damage following partial hepatectomy. In conclusion, our work identifies new players in development of the liver vasculature in health and liver regeneration.


Asunto(s)
Orientación del Axón , Arteria Hepática , Animales , Ratones , Conductos Biliares , Morfogénesis , Silenciador del Gen
9.
Nature ; 618(7965): 607-615, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37286594

RESUMEN

Immunotherapy based on immunecheckpoint blockade (ICB) using antibodies induces rejection of tumours and brings clinical benefit in patients with various cancer types1. However, tumours often resist immune rejection. Ongoing efforts trying to increase tumour response rates are based on combinations of ICB with compounds that aim to reduce immunosuppression in the tumour microenvironment but usually have little effect when used as monotherapies2,3. Here we show that agonists of α2-adrenergic receptors (α2-AR) have very strong anti-tumour activity when used as monotherapies in multiple immunocompetent tumour models, including ICB-resistant models, but not in immunodeficient models. We also observed marked effects in human tumour xenografts implanted in mice reconstituted with human lymphocytes. The anti-tumour effects of α2-AR agonists were reverted by α2-AR antagonists, and were absent in Adra2a-knockout (encoding α2a-AR) mice, demonstrating on-target action exerted on host cells, not tumour cells. Tumours from treated mice contained increased infiltrating T lymphocytes and reduced myeloid suppressor cells, which were more apoptotic. Single-cell RNA-sequencing analysis revealed upregulation of innate and adaptive immune response pathways in macrophages and T cells. To exert their anti-tumour effects, α2-AR agonists required CD4+ T lymphocytes, CD8+ T lymphocytes and macrophages. Reconstitution studies in Adra2a-knockout mice indicated that the agonists acted directly on macrophages, increasing their ability to stimulate T lymphocytes. Our results indicate that α2-AR agonists, some of which are available clinically, could substantially improve the clinical efficacy of cancer immunotherapy.


Asunto(s)
Agonistas de Receptores Adrenérgicos alfa 2 , Neoplasias , Receptores Adrenérgicos alfa 2 , Animales , Humanos , Ratones , Linfocitos T CD4-Positivos/efectos de los fármacos , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD8-positivos/efectos de los fármacos , Linfocitos T CD8-positivos/inmunología , Neoplasias/tratamiento farmacológico , Neoplasias/inmunología , Transducción de Señal/efectos de los fármacos , Microambiente Tumoral , Receptores Adrenérgicos alfa 2/metabolismo , Agonistas de Receptores Adrenérgicos alfa 2/farmacología , Agonistas de Receptores Adrenérgicos alfa 2/uso terapéutico , Antagonistas de Receptores Adrenérgicos alfa 2/farmacología , Macrófagos/efectos de los fármacos , Macrófagos/inmunología , Ratones Noqueados , Análisis de Expresión Génica de una Sola Célula
10.
Aging (Albany NY) ; 15(11): 4576-4599, 2023 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-37204430

RESUMEN

BACKGROUND: Premature senescence occurs in adult hepatobiliary diseases and worsens the prognosis through deleterious liver remodeling and hepatic dysfunction. Senescence might also arises in biliary atresia (BA), the first cause of pediatric liver transplantation. Since alternatives to transplantation are needed, our aim was to investigate premature senescence in BA and to assess senotherapies in a preclinical model of biliary cirrhosis. METHODS: BA liver tissues were prospectively obtained at hepatoportoenterostomy (n=5) and liver transplantation (n=30) and compared to controls (n=10). Senescence was investigated through spatial whole transcriptome analysis, SA-ß-gal activity, p16 and p21 expression, γ-H2AX and senescence-associated secretory phenotype (SASP). Human allogenic liver-derived progenitor cells (HALPC) or dasatinib and quercetin (D+Q) were administrated to two-month-old Wistar rats after bile duct ligation (BDL). RESULTS: Advanced premature senescence was evidenced in BA livers from early stage and continued to progress until liver transplantation. Senescence and SASP were predominant in cholangiocytes, but also present in surrounding hepatocytes. HALPC but not D+Q reduced the early marker of senescence p21 in BDL rats and improved biliary injury (serum γGT and Sox9 expression) and hepatocytes mass loss (Hnf4a). CONCLUSIONS: BA livers displayed advanced cellular senescence at diagnosis that continued to progress until liver transplantation. HALPC reduced early senescence and improved liver disease in a preclinical model of BA, providing encouraging preliminary results regarding the use of senotherapies in pediatric biliary cirrhosis.


Asunto(s)
Atresia Biliar , Cirrosis Hepática Biliar , Humanos , Ratas , Animales , Atresia Biliar/metabolismo , Cirrosis Hepática Biliar/metabolismo , Cirrosis Hepática Biliar/patología , Ratas Wistar , Hígado/metabolismo , Hepatocitos/metabolismo , Senescencia Celular
11.
Hypertension ; 80(5): 1011-1023, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36876500

RESUMEN

BACKGROUND: Preeclampsia is one of the leading causes of maternal mortality worldwide and is strongly associated with long-term morbidity in mothers and newborns. Referred to as one of the deep placentation disorders, insufficient remodeling of the spiral arteries during the first trimester remains a major cause of placental dysfunction. Persisting pulsatile uterine blood flow causes abnormal ischemia/reoxygenation phenomenon in the placenta and stabilizes the HIF-2α (hypoxia-inducible factor-2α) in the cytotrophoblasts. HIF-2α signaling impairs trophoblast differentiation and increases sFLT-1 (soluble fms-like tyrosine kinase-1) secretion, which reduces fetal growth and causes maternal symptoms. This study aims to evaluate the benefits of using PT2385-an oral specific HIF-2α inhibitor-to treat severe placental dysfunction. METHODS: To evaluate its therapeutic potential, PT2385 was first studied in primary human cytotrophoblasts isolated from term placenta and exposed to 2.5% O2 to stabilize HIF-2α. Viability and luciferase assays, RNA sequencing, and immunostaining were used to analyze differentiation and angiogenic factor balance. The ability of PT2385 to mitigate maternal manifestations of preeclampsia was studied in the selective reduced uterine perfusion pressure model performed in Sprague-Dawley rats. RESULTS: In vitro, RNA sequencing analysis and conventional techniques showed that treated cytotrophoblast displayed an enhanced differentiation into syncytiotrophoblasts and normalized angiogenic factor secretion compared with vehicle-treated cells. In the selective reduced uterine perfusion pressure model, PT2385 efficiently decreased sFLT-1 production, thus preventing the onset of hypertension and proteinuria in pregnant dams. CONCLUSIONS: These results highlight HIF-2α as a new player in our understanding of placental dysfunction and support the use of PT2385 to treat severe preeclampsia in humans.


Asunto(s)
Preeclampsia , Recién Nacido , Humanos , Ratas , Embarazo , Femenino , Animales , Placenta/irrigación sanguínea , Inductores de la Angiogénesis , Ratas Sprague-Dawley , Placentación , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico , Hipoxia/complicaciones , Receptor 1 de Factores de Crecimiento Endotelial Vascular/genética
12.
Nat Methods ; 20(3): 375-386, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36864200

RESUMEN

Analyzing proteins from single cells by tandem mass spectrometry (MS) has recently become technically feasible. While such analysis has the potential to accurately quantify thousands of proteins across thousands of single cells, the accuracy and reproducibility of the results may be undermined by numerous factors affecting experimental design, sample preparation, data acquisition and data analysis. We expect that broadly accepted community guidelines and standardized metrics will enhance rigor, data quality and alignment between laboratories. Here we propose best practices, quality controls and data-reporting recommendations to assist in the broad adoption of reliable quantitative workflows for single-cell proteomics. Resources and discussion forums are available at https://single-cell.net/guidelines .


Asunto(s)
Benchmarking , Proteómica , Benchmarking/métodos , Proteómica/métodos , Reproducibilidad de los Resultados , Proteínas/análisis , Espectrometría de Masas en Tándem/métodos , Proteoma/análisis
13.
Blood Adv ; 7(17): 4705-4720, 2023 09 12.
Artículo en Inglés | MEDLINE | ID: mdl-36753606

RESUMEN

Splenectomy improves the clinical parameters of patients with hereditary spherocytosis, but its potential benefit to red blood cell (RBC) functionality and the mechanism behind this benefit remain largely overlooked. Here, we compared 7 nonsplenectomized and 13 splenectomized patients with mutations in the ß-spectrin or the ankyrin gene. We showed that hematological parameters, spherocyte abundance, osmotic fragility, intracellular calcium, and extracellular vesicle release were largely but not completely restored by splenectomy, whereas cryohemolysis was not. Affected RBCs exhibited decreases in ß-spectrin and/or ankyrin contents and slight alterations in spectrin membrane distribution, depending on the mutation. These modifications were found in both splenectomized and nonsplenectomized patients and poorly correlated with RBC functionality alteration, suggesting additional impairments. Accordingly, we found an increased abundance of septins, small guanosine triphosphate-binding cytoskeletal proteins. Septins-2, -7, and -8 but not -11 were less abundant upon splenectomy and correlated with the disease severity. Septin-2 membrane association was confirmed by immunolabeling. Except for cryohemolysis, all parameters of RBC morphology and functionality correlated with septin abundance. The increased septin content might result from RBC maturation defects, as evidenced by (1) the decreased protein 4.2 and Rh-associated glycoprotein content in all patient RBCs, (2) increased endoplasmic reticulum remnants and endocytosis proteins in nonsplenectomized patients, and (3) increased lysosomal and mitochondrial remnants in splenectomized patients. Our study paves the way for a better understanding of the involvement of septins in RBC membrane biophysical properties. In addition, the lack of restoration of septin-independent cryohemolysis by splenectomy may call into question its recommendation in specific cases.


Asunto(s)
Espectrina , Esferocitosis Hereditaria , Humanos , Espectrina/genética , Espectrina/metabolismo , Septinas/genética , Septinas/metabolismo , Esplenectomía , Ancirinas/genética , Ancirinas/metabolismo , Esferocitosis Hereditaria/cirugía , Esferocitosis Hereditaria/genética , Eritrocitos/metabolismo
14.
Curr Protoc ; 3(1): e658, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36633424

RESUMEN

Sound data analysis is essential to retrieve meaningful biological information from single-cell proteomics experiments. This analysis is carried out by computational methods that are assembled into workflows, and their implementations influence the conclusions that can be drawn from the data. In this work, we explore and compare the computational workflows that have been used over the last four years and identify a profound lack of consensus on how to analyze single-cell proteomics data. We highlight the need for benchmarking of computational workflows and standardization of computational tools and data, as well as carefully designed experiments. Finally, we cover the current standardization efforts that aim to fill the gap, list the remaining missing pieces, and conclude with lessons learned from the replication of published single-cell proteomics analyses. © 2023 Wiley Periodicals LLC.


Asunto(s)
Proteómica , Programas Informáticos , Proteómica/métodos , Flujo de Trabajo , Análisis de Datos , Estándares de Referencia
15.
Ann Appl Stat ; 16(4)2022 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-36507469

RESUMEN

Understanding sub-cellular protein localisation is an essential component in the analysis of context specific protein function. Recent advances in quantitative mass-spectrometry (MS) have led to high resolution mapping of thousands of proteins to sub-cellular locations within the cell. Novel modelling considerations to capture the complex nature of these data are thus necessary. We approach analysis of spatial proteomics data in a non-parametric Bayesian framework, using K-component mixtures of Gaussian process regression models. The Gaussian process regression model accounts for correlation structure within a sub-cellular niche, with each mixture component capturing the distinct correlation structure observed within each niche. The availability of marker proteins (i.e. proteins with a priori known labelled locations) motivates a semi-supervised learning approach to inform the Gaussian process hyperparameters. We moreover provide an efficient Hamiltonian-within-Gibbs sampler for our model. Furthermore, we reduce the computational burden associated with inversion of covariance matrices by exploiting the structure in the covariance matrix. A tensor decomposition of our covariance matrices allows extended Trench and Durbin algorithms to be applied to reduce the computational complexity of inversion and hence accelerate computation. We provide detailed case-studies on Drosophila embryos and mouse pluripotent embryonic stem cells to illustrate the benefit of semi-supervised functional Bayesian modelling of the data.

16.
PLoS Pathog ; 18(12): e1011042, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36508477

RESUMEN

Proteins from some unrelated pathogens, including small RNA viruses of the family Picornaviridae, large DNA viruses such as Kaposi sarcoma-associated herpesvirus and even bacteria of the genus Yersinia can recruit cellular p90-ribosomal protein S6 kinases (RSKs) through a common linear motif and maintain the kinases in an active state. On the one hand, pathogens' proteins might hijack RSKs to promote their own phosphorylation (direct target model). On the other hand, some data suggested that pathogens' proteins might dock the hijacked RSKs toward a third interacting partner, thus redirecting the kinase toward a specific substrate. We explored the second hypothesis using the Cardiovirus leader protein (L) as a paradigm. The L protein is known to trigger nucleocytoplasmic trafficking perturbation, which correlates with hyperphosphorylation of phenylalanine-glycine (FG)-nucleoporins (FG-NUPs) such as NUP98. Using a biotin ligase fused to either RSK or L, we identified FG-NUPs as primary partners of the L-RSK complex in infected cells. An L protein mutated in the central RSK-interaction motif was readily targeted to the nuclear envelope whereas an L protein mutated in the C-terminal domain still interacted with RSK but failed to interact with the nuclear envelope. Thus, L uses distinct motifs to recruit RSK and to dock the L-RSK complex toward the FG-NUPs. Using an analog-sensitive RSK2 mutant kinase, we show that, in infected cells, L can trigger RSK to use NUP98 and NUP214 as direct substrates. Our data therefore illustrate a novel virulence mechanism where pathogens' proteins hijack and retarget cellular protein kinases toward specific substrates, to promote their replication or to escape immunity.


Asunto(s)
Cardiovirus , Proteínas Quinasas S6 Ribosómicas 90-kDa/genética , Proteínas Quinasas S6 Ribosómicas 90-kDa/metabolismo , Proteínas Quinasas/metabolismo , Fosforilación
17.
Nat Commun ; 13(1): 5948, 2022 10 10.
Artículo en Inglés | MEDLINE | ID: mdl-36216816

RESUMEN

The steady-state localisation of proteins provides vital insight into their function. These localisations are context specific with proteins translocating between different subcellular niches upon perturbation of the subcellular environment. Differential localisation, that is a change in the steady-state subcellular location of a protein, provides a step towards mechanistic insight of subcellular protein dynamics. High-accuracy high-throughput mass spectrometry-based methods now exist to map the steady-state localisation and re-localisation of proteins. Here, we describe a principled Bayesian approach, BANDLE, that uses these data to compute the probability that a protein differentially localises upon cellular perturbation. Extensive simulation studies demonstrate that BANDLE reduces the number of both type I and type II errors compared to existing approaches. Application of BANDLE to several datasets recovers well-studied translocations. In an application to cytomegalovirus infection, we obtain insights into the rewiring of the host proteome. Integration of other high-throughput datasets allows us to provide the functional context of these data.


Asunto(s)
Proteoma , Proteómica , Teorema de Bayes , Espectrometría de Masas/métodos , Proteoma/metabolismo , Proteómica/métodos , Fracciones Subcelulares/metabolismo
18.
Diabetes Care ; 45(10): 2360-2368, 2022 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-35994729

RESUMEN

OBJECTIVE: To evaluate whether indexes of glycemic variability may overcome residual ß-cell secretion estimates in the longitudinal evaluation of partial remission in a cohort of pediatric patients with new-onset type 1 diabetes. RESEARCH DESIGN AND METHODS: Values of residual ß-cell secretion estimates, clinical parameters (e.g., HbA1c or insulin daily dose), and continuous glucose monitoring (CGM) from 78 pediatric patients with new-onset type 1 diabetes were longitudinally collected during 1 year and cross-sectionally compared. Circadian patterns of CGM metrics were characterized and correlated to remission status using an adjusted mixed-effects model. Patients were clustered based on 46 CGM metrics and clinical parameters and compared using nonparametric ANOVA. RESULTS: Study participants had a mean (± SD) age of 10.4 (± 3.6) years at diabetes onset, and 65% underwent partial remission at 3 months. ß-Cell residual secretion estimates demonstrated weak-to-moderate correlations with clinical parameters and CGM metrics (r2 = 0.05-0.25; P < 0.05). However, CGM metrics strongly correlated with clinical parameters (r2 >0.52; P < 0.05) and were sufficient to distinguish remitters from nonremitters. Also, CGM metrics from remitters displayed specific early morning circadian patterns characterized by increased glycemic stability across days (within 63-140 mg/dL range) and decreased rate of grade II hypoglycemia (P < 0.0001) compared with nonremitters. Thorough CGM analysis allowed the identification of four novel glucotypes (P < 0.001) that segregate patients into subgroups and mirror the evolution of remission after diabetes onset. CONCLUSIONS: In our pediatric cohort, combination of CGM metrics and clinical parameters unraveled key clinical milestones of glucose homeostasis and remission status during the first year of type 1 diabetes.


Asunto(s)
Glucemia , Diabetes Mellitus Tipo 1 , Adolescente , Glucemia/análisis , Automonitorización de la Glucosa Sanguínea , Niño , Diabetes Mellitus Tipo 1/inducido químicamente , Diabetes Mellitus Tipo 1/tratamiento farmacológico , Hemoglobina Glucada/análisis , Humanos , Insulina/uso terapéutico
19.
Viruses ; 14(7)2022 06 23.
Artículo en Inglés | MEDLINE | ID: mdl-35891354

RESUMEN

More than two years on, the COVID-19 pandemic continues to wreak havoc around the world and has battle-tested the pandemic-situation responses of all major global governments. Two key areas of investigation that are still unclear are: the molecular mechanisms that lead to heterogenic patient outcomes, and the causes of Post COVID condition (AKA Long-COVID). In this paper, we introduce the HYGIEIA project, designed to respond to the enormous challenges of the COVID-19 pandemic through a multi-omic approach supported by network medicine. It is hoped that in addition to investigating COVID-19, the logistics deployed within this project will be applicable to other infectious agents, pandemic-type situations, and also other complex, non-infectious diseases. Here, we first look at previous research into COVID-19 in the context of the proteome, metabolome, transcriptome, microbiome, host genome, and viral genome. We then discuss a proposed methodology for a large-scale multi-omic longitudinal study to investigate the aforementioned biological strata through high-throughput sequencing (HTS) and mass-spectrometry (MS) technologies. Lastly, we discuss how a network medicine approach can be used to analyze the data and make meaningful discoveries, with the final aim being the translation of these discoveries into the clinics to improve patient care.


Asunto(s)
COVID-19 , Enfermedades Transmisibles , COVID-19/complicaciones , COVID-19/epidemiología , Enfermedades Transmisibles/epidemiología , Humanos , Estudios Longitudinales , Metabolómica/métodos , Pandemias , Biología de Sistemas/métodos , Síndrome Post Agudo de COVID-19
20.
Sci Rep ; 12(1): 12498, 2022 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-35864120

RESUMEN

Development of the pancreas is driven by an intrinsic program coordinated with signals from other cell types in the epithelial environment. These intercellular communications have been so far challenging to study because of the low concentration, localized production and diversity of the signals released. Here, we combined scRNAseq data with a computational interactomic approach to identify signals involved in the reciprocal interactions between the various cell types of the developing pancreas. This in silico approach yielded 40,607 potential ligand-target interactions between the different main pancreatic cell types. Among this vast network of interactions, we focused on three ligands potentially involved in communications between epithelial and endothelial cells. BMP7 and WNT7B, expressed by pancreatic epithelial cells and predicted to target endothelial cells, and SEMA6D, involved in the reverse interaction. In situ hybridization confirmed the localized expression of Bmp7 in the pancreatic epithelial tip cells and of Wnt7b in the trunk cells. On the contrary, Sema6d was enriched in endothelial cells. Functional experiments on ex vivo cultured pancreatic explants indicated that tip cell-produced BMP7 limited development of endothelial cells. This work identified ligands with a restricted tissular and cellular distribution and highlighted the role of BMP7 in the intercellular communications contributing to vessel development and organization during pancreas organogenesis.


Asunto(s)
Células Endoteliales , Organogénesis , Diferenciación Celular/fisiología , Células Endoteliales/metabolismo , Ligandos , Organogénesis/fisiología , Páncreas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...