Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Neurosci ; 27(5): 873-885, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38539014

RESUMEN

Human genetics implicate defective myeloid responses in the development of late-onset Alzheimer disease. A decline in peripheral and brain myeloid metabolism, triggering maladaptive immune responses, is a feature of aging. The role of TREM1, a pro-inflammatory factor, in neurodegenerative diseases is unclear. Here we show that Trem1 deficiency prevents age-dependent changes in myeloid metabolism, inflammation and hippocampal memory function in mice. Trem1 deficiency rescues age-associated declines in ribose 5-phosphate. In vitro, Trem1-deficient microglia are resistant to amyloid-ß42 oligomer-induced bioenergetic changes, suggesting that amyloid-ß42 oligomer stimulation disrupts homeostatic microglial metabolism and immune function via TREM1. In the 5XFAD mouse model, Trem1 haploinsufficiency prevents spatial memory loss, preserves homeostatic microglial morphology, and reduces neuritic dystrophy and changes in the disease-associated microglial transcriptomic signature. In aging APPSwe mice, Trem1 deficiency prevents hippocampal memory decline while restoring synaptic mitochondrial function and cerebral glucose uptake. In postmortem Alzheimer disease brain, TREM1 colocalizes with Iba1+ cells around amyloid plaques and its expression is associated with Alzheimer disease clinical and neuropathological severity. Our results suggest that TREM1 promotes cognitive decline in aging and in the context of amyloid pathology.


Asunto(s)
Envejecimiento , Enfermedad de Alzheimer , Modelos Animales de Enfermedad , Metabolismo Energético , Microglía , Receptor Activador Expresado en Células Mieloides 1 , Animales , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Enfermedad de Alzheimer/genética , Envejecimiento/metabolismo , Receptor Activador Expresado en Células Mieloides 1/metabolismo , Receptor Activador Expresado en Células Mieloides 1/genética , Ratones , Metabolismo Energético/fisiología , Microglía/metabolismo , Ratones Transgénicos , Péptidos beta-Amiloides/metabolismo , Cognición/fisiología , Humanos , Masculino , Hipocampo/metabolismo , Hipocampo/patología , Ratones Endogámicos C57BL
2.
Nature ; 590(7844): 122-128, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33473210

RESUMEN

Ageing is characterized by the development of persistent pro-inflammatory responses that contribute to atherosclerosis, metabolic syndrome, cancer and frailty1-3. The ageing brain is also vulnerable to inflammation, as demonstrated by the high prevalence of age-associated cognitive decline and Alzheimer's disease4-6. Systemically, circulating pro-inflammatory factors can promote cognitive decline7,8, and in the brain, microglia lose the ability to clear misfolded proteins that are associated with neurodegeneration9,10. However, the underlying mechanisms that initiate and sustain maladaptive inflammation with ageing are not well defined. Here we show that in ageing mice myeloid cell bioenergetics are suppressed in response to increased signalling by the lipid messenger prostaglandin E2 (PGE2), a major modulator of inflammation11. In ageing macrophages and microglia, PGE2 signalling through its EP2 receptor promotes the sequestration of glucose into glycogen, reducing glucose flux and mitochondrial respiration. This energy-deficient state, which drives maladaptive pro-inflammatory responses, is further augmented by a dependence of aged myeloid cells on glucose as a principal fuel source. In aged mice, inhibition of myeloid EP2 signalling rejuvenates cellular bioenergetics, systemic and brain inflammatory states, hippocampal synaptic plasticity and spatial memory. Moreover, blockade of peripheral myeloid EP2 signalling is sufficient to restore cognition in aged mice. Our study suggests that cognitive ageing is not a static or irrevocable condition but can be reversed by reprogramming myeloid glucose metabolism to restore youthful immune functions.


Asunto(s)
Envejecimiento/metabolismo , Disfunción Cognitiva/prevención & control , Células Mieloides/metabolismo , Adulto , Anciano , Envejecimiento/efectos de los fármacos , Envejecimiento/genética , Animales , Respiración de la Célula , Células Cultivadas , Disfunción Cognitiva/tratamiento farmacológico , Disfunción Cognitiva/genética , Dinoprostona/metabolismo , Metabolismo Energético , Glucosa/metabolismo , Glucógeno/biosíntesis , Glucógeno/metabolismo , Humanos , Inflamación/metabolismo , Macrófagos/efectos de los fármacos , Macrófagos/inmunología , Macrófagos/metabolismo , Trastornos de la Memoria/tratamiento farmacológico , Ratones , Microglía/efectos de los fármacos , Microglía/inmunología , Microglía/metabolismo , Mitocondrias/metabolismo , Células Mieloides/inmunología , Subtipo EP2 de Receptores de Prostaglandina E/antagonistas & inhibidores , Subtipo EP2 de Receptores de Prostaglandina E/deficiencia , Subtipo EP2 de Receptores de Prostaglandina E/genética , Subtipo EP2 de Receptores de Prostaglandina E/metabolismo , Transducción de Señal/efectos de los fármacos , Memoria Espacial/efectos de los fármacos
3.
Neurobiol Aging ; 98: 63-77, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33254080

RESUMEN

Synaptic failure underlies cognitive impairment in Alzheimer's disease (AD). Cumulative evidence suggests a strong link between mitochondrial dysfunction and synaptic deficits in AD. We previously found that oligomycin-sensitivity-conferring protein (OSCP) dysfunction produces pronounced neuronal mitochondrial defects in AD brains and a mouse model of AD pathology (5xFAD mice). Here, we prevented OSCP dysfunction by overexpressing OSCP in 5xFAD mouse neurons in vivo (Thy-1 OSCP/5xFAD mice). This approach protected OSCP expression and reduced interaction of amyloid-beta (Aß) with membrane-bound OSCP. OSCP overexpression also alleviated F1Fo ATP synthase deregulation and preserved mitochondrial function. Moreover, OSCP modulation conferred resistance to Aß-mediated defects in axonal mitochondrial dynamics and motility. Consistent with preserved neuronal mitochondrial function, OSCP overexpression ameliorated synaptic injury in 5xFAD mice as demonstrated by preserved synaptic density, reduced complement-dependent synapse elimination, and improved synaptic transmission, leading to preserved spatial learning and memory. Taken together, our findings show the consequences of OSCP dysfunction in the development of synaptic stress in AD-related conditions and implicate OSCP modulation as a potential therapeutic strategy.


Asunto(s)
Enfermedad de Alzheimer/etiología , Mitocondrias/genética , ATPasas de Translocación de Protón Mitocondriales/fisiología , Transmisión Sináptica/genética , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/psicología , Enfermedad de Alzheimer/terapia , Péptidos beta-Amiloides/metabolismo , Animales , Modelos Animales de Enfermedad , Expresión Génica , Memoria , Ratones Transgénicos , Mitocondrias/metabolismo , Dinámicas Mitocondriales/genética , ATPasas de Translocación de Protón Mitocondriales/genética , ATPasas de Translocación de Protón Mitocondriales/metabolismo , Terapia Molecular Dirigida , Neuronas/metabolismo , Aprendizaje Espacial
4.
J Neurosci ; 40(32): 6121-6132, 2020 08 05.
Artículo en Inglés | MEDLINE | ID: mdl-32605939

RESUMEN

Redox dysregulation and oxidative stress are final common pathways in the pathophysiology of a variety of psychiatric disorders, including schizophrenia. Oxidative stress causes dysfunction of GABAergic parvalbumin (PV)-positive interneurons (PVI), which are crucial for the coordination of neuronal synchrony during sensory and cognitive processing. Mitochondria are the main source of reactive oxygen species (ROS) in neurons and they control synaptic activity through their roles in energy production and intracellular calcium homeostasis. We have previously shown that in male mice transient blockade of NMDA receptors (NMDARs) during development [subcutaneous injections of 30 mg/kg ketamine (KET) on postnatal days 7, 9, and 11] results in long-lasting alterations in synaptic transmission and reduced PV expression in the adult prefrontal cortex (PFC), contributing to a behavioral phenotype that mimics multiple symptoms associated with schizophrenia. These changes correlate with oxidative stress and impaired mitochondrial function in both PVI and pyramidal cells. Here, we show that genetic deletion (Ppif-/-) of the mitochondrial matrix protein cyclophilin D (CypD) prevents perinatal KET-induced increases in ROS and the resulting deficits in PVI function, and changes in excitatory and inhibitory synaptic transmission in the PFC. Deletion of CypD also prevented KET-induced behavioral deficits in cognitive flexibility, social interaction, and novel object recognition (NOR). Taken together, these data highlight how mitochondrial activity may play an integral role in modulating PVI-mediated cognitive processes.SIGNIFICANCE STATEMENT Mitochondria are important modulators of oxidative stress and cell function, yet how mitochondrial dysfunction affects cell activity and synaptic transmission in psychiatric illnesses is not well understood. NMDA receptor (NMDAR) blockade with ketamine (KET) during development causes oxidative stress, dysfunction of parvalbumin (PV)-positive interneurons (PVI), and long-lasting physiological and behavioral changes. Here we show that mice deficient for the mitochondrial matrix protein cyclophilin D (CypD) show robust protection from PVI dysfunction following perinatal NMDAR blockade. Mitochondria serve as an essential node for a number of stress-induced signaling pathways and our experiments suggest that failure of mitochondrial redox regulation can contribute to PVI dysfunction.


Asunto(s)
Disfunción Cognitiva/metabolismo , Neuronas GABAérgicas/metabolismo , Interneuronas/metabolismo , Peptidil-Prolil Isomerasa F/metabolismo , Animales , Disfunción Cognitiva/etiología , Disfunción Cognitiva/genética , Peptidil-Prolil Isomerasa F/genética , Antagonistas de Aminoácidos Excitadores/toxicidad , Neuronas GABAérgicas/fisiología , Eliminación de Gen , Interneuronas/fisiología , Ketamina/toxicidad , Masculino , Ratones , Ratones Endogámicos C57BL , Parvalbúminas/genética , Parvalbúminas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Receptores de N-Metil-D-Aspartato/antagonistas & inhibidores , Receptores de N-Metil-D-Aspartato/metabolismo
5.
Sci Transl Med ; 11(505)2019 08 14.
Artículo en Inglés | MEDLINE | ID: mdl-31413143

RESUMEN

Hippocampal lesions are a defining pathology of Alzheimer's disease (AD). However, the molecular mechanisms that underlie hippocampal synaptic injury in AD have not been fully elucidated. Current therapeutic efforts for AD treatment are not effective in correcting hippocampal synaptic deficits. Growth hormone secretagogue receptor 1α (GHSR1α) is critical for hippocampal synaptic physiology. Here, we report that GHSR1α interaction with ß-amyloid (Aß) suppresses GHSR1α activation, leading to compromised GHSR1α regulation of dopamine receptor D1 (DRD1) in the hippocampus from patients with AD. The simultaneous application of the selective GHSR1α agonist MK0677 with the selective DRD1 agonist SKF81297 rescued Ghsr1α function from Aß inhibition, mitigating hippocampal synaptic injury and improving spatial memory in an AD mouse model. Our data reveal a mechanism of hippocampal vulnerability in AD and suggest that a combined activation of GHSR1α and DRD1 may be a promising approach for treating AD.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Hipocampo/metabolismo , Receptores de Dopamina D1/metabolismo , Receptores de Ghrelina/metabolismo , Péptidos beta-Amiloides/metabolismo , Animales , Femenino , Células HEK293 , Humanos , Masculino , Ratones , Unión Proteica , Transducción de Señal/genética , Transducción de Señal/fisiología
6.
Neurobiol Dis ; 121: 138-147, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30266287

RESUMEN

Mitochondrial dysfunction is pivotal in inducing synaptic injury and neuronal stress in Alzheimer's disease (AD). Mitochondrial F1Fo ATP synthase deregulation is a hallmark mitochondrial defect leading to oxidative phosphorylation (OXPHOS) failure in this neurological disorder. Oligomycin sensitivity conferring protein (OSCP) is a crucial F1Fo ATP synthase subunit. Decreased OSCP levels and OSCP interaction with amyloid ß (Aß) constitute key aspects of F1Fo ATP synthase pathology in AD-related conditions. However, the detailed mechanisms promoting such AD-related OSCP changes have not been fully resolved. Here, we have found increased physical interaction of OSCP with Cyclophilin D (CypD) in AD cases as well as in an AD animal model (5xFAD mice). Genetic depletion of CypD mitigates OSCP loss via ubiquitin-dependent OSCP degradation in 5xFAD mice. Moreover, the ablation of CypD also attenuates OSCP/Aß interaction in AD mice. The relieved OSCP changes by CypD depletion in 5xFAD mice are along with preserved F1Fo ATP synthase function, restored mitochondrial bioenergetics as well as improved mouse cognition. The simplest interpretation of our results is that CypD is a critical mediator that promotes OSCP deficits in AD-related conditions. Therefore, to block the deleterious impact of CypD on OSCP has the potential to be a promising therapeutic strategy to correct mitochondrial dysfunction for AD therapy.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo , Ciclofilinas/metabolismo , ATPasas de Translocación de Protón Mitocondriales/metabolismo , Animales , Peptidil-Prolil Isomerasa F , Ciclofilinas/deficiencia , Ciclofilinas/genética , Modelos Animales de Enfermedad , Ratones Noqueados , Ubiquitinación
7.
J Neurochem ; 146(4): 403-415, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29900530

RESUMEN

Recent studies have highlighted the role of mitochondria in dendritic protrusion growth and plasticity. However, the detailed mechanisms that mitochondria regulate dendritic filopodia morphogenesis remain elusive. Cyclophilin D (CypD, gene name: Ppif) controls the opening of mitochondrial permeability transition pore. Although the pathological relevance of CypD has been intensively investigated, little is known about its physiological function in neurons. Here, we have found that genetic depletion of or pharmaceutical inhibition of CypD blunts the outgrowth of dendritic filopodia in response to KCl-stimulated neuronal depolarization. Further cell biological studies suggest that such inhibitory effect of CypD loss-of-function is closely associated with compromised flexibility of dendritic mitochondrial calcium regulation during neuronal depolarization, as well as the resultant changes in intradendritic calcium homeostasis, calcium signaling activation, dendritic mitochondrial motility and redistribution. Interestingly, loss of CypD attenuates oxidative stress-induced mitochondrial calcium perturbations and dendritic protrusion injury. Therefore, our study has revealed the physiological function of CypD in dendritic plasticity by acting as a fine-tuner of mitochondrial calcium homeostasis. Moreover, CypD plays distinct roles in neuronal physiology and pathology. Cover Image for this issue: doi: 10.1111/jnc.14189.


Asunto(s)
Calcio/metabolismo , Ciclofilinas/metabolismo , Dendritas/ultraestructura , Mitocondrias/metabolismo , Neuronas/metabolismo , Neuronas/ultraestructura , Seudópodos/fisiología , Animales , Animales Recién Nacidos , Encéfalo/citología , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/genética , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Células Cultivadas , Peptidil-Prolil Isomerasa F , Ciclofilinas/genética , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Dinámicas Mitocondriales/efectos de los fármacos , Dinámicas Mitocondriales/genética , Proteínas de Transporte de Membrana Mitocondrial/genética , Proteínas de Transporte de Membrana Mitocondrial/fisiología , Poro de Transición de la Permeabilidad Mitocondrial , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Cloruro de Potasio/farmacología , Seudópodos/efectos de los fármacos
8.
J Alzheimers Dis ; 55(4): 1351-1362, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-27834780

RESUMEN

Brain aging is the known strongest risk factor for Alzheimer's disease (AD). In recent years, mitochondrial deficits have been proposed to be a common mechanism linking brain aging to AD. Therefore, to elucidate the causative mechanisms of mitochondrial dysfunction in aging brains is of paramount importance for our understanding of the pathogenesis of AD, in particular its sporadic form. Cyclophilin D (CypD) is a specific mitochondrial protein. Recent studies have shown that F1FO ATP synthase oligomycin sensitivity conferring protein (OSCP) is a binding partner of CypD. The interaction of CypD with OSCP modulates F1FO ATP synthase function and mediates mitochondrial permeability transition pore (mPTP) opening. Here, we have found that increased CypD expression, enhanced CypD/OSCP interaction, and selective loss of OSCP are prominent brain mitochondrial changes in aging mice. Along with these changes, brain mitochondria from the aging mice demonstrated decreased F1FO ATP synthase activity and defective F1FO complex coupling. In contrast, CypD deficient mice exhibited substantially mitigated brain mitochondrial F1FO ATP synthase dysfunction with relatively preserved mitochondrial function during aging. Interestingly, the aging-related OSCP loss was also dramatically attenuated by CypD depletion. Therefore, the simplest interpretation of this study is that CypD promotes F1FO ATP synthase dysfunction and the resultant mitochondrial deficits in aging brains. In addition, in view of CypD and F1FO ATP synthase alterations seen in AD brains, the results further suggest that CypD-mediated F1FO ATP synthase deregulation is a shared mechanism linking mitochondrial deficits in brain aging and AD.


Asunto(s)
Envejecimiento , Encéfalo/ultraestructura , Ciclofilinas/deficiencia , Mitocondrias/metabolismo , ATPasas de Translocación de Protón Mitocondriales/metabolismo , Adenosina Difosfato/farmacología , Adenosina Trifosfatasas/metabolismo , Envejecimiento/efectos de los fármacos , Animales , Encéfalo/diagnóstico por imagen , Proteínas Portadoras/metabolismo , Peptidil-Prolil Isomerasa F , Ciclofilinas/genética , Ciclofilinas/farmacología , Regulación de la Expresión Génica/efectos de los fármacos , Regulación de la Expresión Génica/genética , Ácido Glutámico/farmacología , Inmunoprecipitación , Proteínas de la Membrana/metabolismo , Ratones , Ratones Transgénicos , Mitocondrias/efectos de los fármacos , Consumo de Oxígeno
9.
Nat Commun ; 7: 11483, 2016 05 06.
Artículo en Inglés | MEDLINE | ID: mdl-27151236

RESUMEN

F1FO-ATP synthase is critical for mitochondrial functions. The deregulation of this enzyme results in dampened mitochondrial oxidative phosphorylation (OXPHOS) and activated mitochondrial permeability transition (mPT), defects which accompany Alzheimer's disease (AD). However, the molecular mechanisms that connect F1FO-ATP synthase dysfunction and AD remain unclear. Here, we observe selective loss of the oligomycin sensitivity conferring protein (OSCP) subunit of the F1FO-ATP synthase and the physical interaction of OSCP with amyloid beta (Aß) in the brains of AD individuals and in an AD mouse model. Changes in OSCP levels are more pronounced in neuronal mitochondria. OSCP loss and its interplay with Aß disrupt F1FO-ATP synthase, leading to reduced ATP production, elevated oxidative stress and activated mPT. The restoration of OSCP ameliorates Aß-mediated mouse and human neuronal mitochondrial impairments and the resultant synaptic injury. Therefore, mitochondrial F1FO-ATP synthase dysfunction associated with AD progression could potentially be prevented by OSCP stabilization.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Adenosina Trifosfato/metabolismo , Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo , Encéfalo/metabolismo , Proteínas Portadoras/metabolismo , Proteínas de la Membrana/metabolismo , Mitocondrias/metabolismo , ATPasas de Translocación de Protón Mitocondriales/metabolismo , Neuronas/metabolismo , Animales , Progresión de la Enfermedad , Humanos , Ratones , Ratones Transgénicos , Fosforilación Oxidativa , Estrés Oxidativo
10.
PLoS One ; 10(12): e0144068, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26632816

RESUMEN

Alzheimer's disease (AD) is heterogeneous and multifactorial neurological disorder; and the risk factors of AD still remain elusive. Recent studies have highlighted the role of vascular factors in promoting the progression of AD and have suggested that ischemic events increase the incidence of AD. However, the detailed mechanisms linking ischemic insult to the progression of AD is still largely undetermined. In this study, we have established a transient cerebral ischemia model on young 5xFAD mice and their non-transgenic (nonTg) littermates by the transient occlusion of bilateral common carotid arteries. We have found that transient cerebral ischemia significantly exacerbates brain mitochondrial dysfunction including mitochondrial respiration deficits, oxidative stress as well as suppressed levels of mitochondrial fusion proteins including optic atrophy 1 (OPA1) and mitofusin 2 (MFN2) in young 5xFAD mice resulting in aggravated spatial learning and memory. Intriguingly, transient cerebral ischemia did not induce elevation in the levels of cortical or mitochondrial Amyloid beta (Aß)1-40 or 1-42 levels in 5xFAD mice. In addition, the glucose- and oxygen-deprivation-induced apoptotic neuronal death in Aß-treated neurons was significantly mitigated by mitochondria-targeted antioxidant mitotempo which suppresses mitochondrial superoxide levels. Therefore, the simplest interpretation of our results is that young 5xFAD mice with pre-existing AD-like mitochondrial dysfunction are more susceptible to the effects of transient cerebral ischemia; and ischemic events may exacerbate dementia and worsen the outcome of AD patients by exacerbating mitochondrial dysfunction.


Asunto(s)
Trastornos del Conocimiento/etiología , Ataque Isquémico Transitorio/fisiopatología , Mitocondrias/fisiología , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/fisiopatología , Péptidos beta-Amiloides/metabolismo , Animales , Apoptosis , Trastornos del Conocimiento/metabolismo , Ataque Isquémico Transitorio/complicaciones , Ataque Isquémico Transitorio/metabolismo , Ratones , Estrés Oxidativo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...