Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Autophagy ; 10(9): 1522-34, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24988326

RESUMEN

AMP-activated protein kinase α1 knockout (prkaa1(-/-)) mice manifest splenomegaly and anemia. The underlying molecular mechanisms, however, remain to be established. In this study, we tested the hypothesis that defective autophagy-dependent mitochondrial clearance in prkaa1(-/-) mice exacerbates oxidative stress, thereby enhancing erythrocyte destruction. The levels of ULK1 phosphorylation, autophagical flux, mitochondrial contents, and reactive oxygen species (ROS) were examined in human erythroleukemia cell line, K562 cells, as well as prkaa1(-/-) mouse embryonic fibroblasts and erythrocytes. Deletion of Prkaa1 resulted in the inhibition of ULK1 phosphorylation at Ser555, prevented the formation of ULK1 and BECN1- PtdIns3K complexes, and reduced autophagy capacity. The suppression of autophagy was associated with enhanced damaged mitochondrial accumulation and ROS production. Compared with wild-type (WT) mice, prkaa1(-/-) mice exhibited a shortened erythrocyte life span, hemolytic destruction of erythrocytes, splenomegaly, and anemia, all of which were alleviated by the administration of either rapamycin to activate autophagy or Mito-tempol, a mitochondria-targeted antioxidant, to scavenge mitochondrial ROS. Furthermore, transplantation of WT bone marrow into prkaa1(-/-) mice restored mitochondrial removal, reduced intracellular ROS levels, and normalized hematologic parameters and spleen size. Conversely, transplantation of prkaa1 (-/-) bone marrow into WT mice recapitulated the prkaa1(-/-) mouse phenotypes. We conclude that PRKAA1-dependent autophagy-mediated clearance of damaged mitochondria is required for erythrocyte maturation and homeostasis.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Autofagia/genética , Eritrocitos/citología , Eritrocitos/metabolismo , Mitocondrias/metabolismo , Proteínas Quinasas Activadas por AMP/genética , Animales , Antioxidantes/farmacología , Autofagia/efectos de los fármacos , Línea Celular , Humanos , Ratones , Ratones Noqueados , Mitocondrias/genética , Estrés Oxidativo/fisiología , Especies Reactivas de Oxígeno/metabolismo
2.
Blood ; 123(4): 509-19, 2014 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-24184684

RESUMEN

Loss of hematopoietic stem cell (HSC) function and increased risk of developing hematopoietic malignancies are severe and concerning complications of anticancer radiotherapy and chemotherapy. We have previously shown that thrombopoietin (TPO), a critical HSC regulator, ensures HSC chromosomal integrity and function in response to γ-irradiation by regulating their DNA-damage response. TPO directly affects the double-strand break (DSB) repair machinery through increased DNA-protein kinase (DNA-PK) phosphorylation and nonhomologous end-joining (NHEJ) repair efficiency and fidelity. This effect is not shared by other HSC growth factors, suggesting that TPO triggers a specific signal in HSCs facilitating DNA-PK activation upon DNA damage. The discovery of these unique signaling pathways will provide a means of enhancing TPO-desirable effects on HSCs and improving the safety of anticancer DNA agents. We show here that TPO specifically triggers Erk and nuclear factor κB (NF-κB) pathways in mouse hematopoietic stem and progenitor cells (HSPCs). Both of these pathways are required for a TPO-mediated increase in DSB repair. They cooperate to induce and activate the early stress-response gene, Iex-1 (ier3), upon DNA damage. Iex-1 forms a complex with pERK and the catalytic subunit of DNA-PK, which is necessary and sufficient to promote TPO-increased DNA-PK activation and NHEJ DSB repair in both mouse and human HSPCs.


Asunto(s)
Reparación del ADN , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Regulación Enzimológica de la Expresión Génica , Células Madre Hematopoyéticas/citología , Proteínas Inmediatas-Precoces/metabolismo , FN-kappa B/metabolismo , Trombopoyetina/metabolismo , Transporte Activo de Núcleo Celular , Animales , Antineoplásicos/química , Dominio Catalítico , Roturas del ADN de Doble Cadena , Daño del ADN , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Fosforilación , Transducción de Señal , Células Madre/citología
3.
Cell Stem Cell ; 12(1): 37-48, 2013 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-23246483

RESUMEN

DNA double-strand breaks (DSBs) represent a serious threat for hematopoietic stem cells (HSCs). How cytokines and environmental signals integrate the DNA damage response and contribute to HSC-intrinsic DNA repair processes remains unknown. Thrombopoietin (TPO) and its receptor, Mpl, are critical factors supporting HSC self-renewal and expansion. Here, we uncover an unknown function for TPO-Mpl in the regulation of DNA damage response. We show that DNA repair following γ-irradiation (γ-IR) or the action of topoisomerase-II inhibitors is defective in Mpl(-/-) and in wild-type mouse or human hematopoietic stem and progenitor cells treated in the absence of TPO. TPO stimulates DNA repair in vitro and in vivo by increasing DNA-PK-dependent nonhomologous end-joining efficiency. This ensures HSC chromosomal integrity and limits their long-term injury in response to IR. This shows that niche factors can modulate the HSC DSB repair machinery and opens new avenues for administration of TPO agonists for minimizing radiotherapy-induced HSC injury and mutagenesis.


Asunto(s)
Daño del ADN/fisiología , Células Madre Hematopoyéticas/metabolismo , Mutagénesis/fisiología , Células Madre/metabolismo , Trombopoyetina/metabolismo , Animales , Ciclo Celular , Ensayo Cometa , Daño del ADN/genética , Femenino , Técnica del Anticuerpo Fluorescente , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Mutantes , Mutagénesis/genética , Trombopoyetina/genética
4.
PLoS One ; 7(1): e30788, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22303456

RESUMEN

The mitogen-activated protein kinases (MAPK) ERK1 and ERK2 are among the major signal transduction molecules but little is known about their specific functions in vivo. ERK activity is provided by two isoforms, ERK1 and ERK2, which are ubiquitously expressed and share activators and substrates. However, there are not in vivo studies which have reported a role for ERK1 or ERK2 in HSCs and the bone marrow microenvironment. The present study shows that the ERK1-deficient mice present a mild osteopetrosis phenotype. The lodging and the homing abilities of the ERK1(-/-) HSC are impaired, suggesting that the ERK1(-/-)-defective environment may affect the engrafment of HSCs. Serial transplantations demonstrate that ERK1 is involved in the maintenance of an appropriate medullar microenvironment, but that the intrinsic properties of HSCs are not altered by the ERK1(-/-) defective microenvironment. Deletion of ERK1 impaired in vitro and in vivo osteoclastogenesis while osteoblasts were unaffected. As osteoclasts derive from precursors of the monocyte/macrophage lineage, investigation of the monocytic compartment was performed. In vivo analysis of the myeloid lineage progenitors revealed that the frequency of CMPs increased by approximately 1.3-fold, while the frequency of GMPs significantly decreased by almost 2-fold, compared with the respective WT compartments. The overall mononuclear-phagocyte lineage development was compromised in these mice due to a reduced expression of the M-CSF receptor on myeloid progenitors. These results show that the cellular targets of ERK1 are M-CSFR-responsive cells, upstream to osteoclasts. While ERK1 is well known to be activated by M-CSF, the present results are the first to point out an ERK1-dependent M-CSFR regulation on hematopoietic progenitors. This study reinforces the hypothesis of an active cross-talk between HSCs, their progeny and bone cells in the maintenance of the homeostasis of these compartments.


Asunto(s)
Células Madre Hematopoyéticas/citología , Células Madre Hematopoyéticas/enzimología , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Nicho de Células Madre , Animales , Densidad Ósea , Médula Ósea/patología , Huesos/enzimología , Huesos/patología , Compartimento Celular , Diferenciación Celular , Linaje de la Célula , Movimiento Celular , Proliferación Celular , Microambiente Celular , Eliminación de Gen , Macrófagos/patología , Ratones , Ratones Endogámicos C57BL , Proteína Quinasa 3 Activada por Mitógenos/deficiencia , Monocitos , Osteoblastos/enzimología , Osteoblastos/patología , Osteoclastos/enzimología , Osteoclastos/patología , Osteogénesis
5.
FEBS Lett ; 584(16): 3667-71, 2010 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-20670625

RESUMEN

AMP-activated protein kinase (AMPK) plays a pivotal role in regulating cellular energy metabolism. We previously showed that AMPKalpha1-/- mice develop moderate anemia associated with splenomegaly and high reticulocytosis. Here, we report that splenectomy of AMPKalpha1-/- mice worsened anemia supporting evidence that AMPKalpha1-/- mice developed a compensatory response through extramedullary erythropoiesis in the spleen. Transplantation of bone marrow from AMPKalpha1-/- mice into wild-type recipients recapitulated the hematologic phenotype. Further, AMPKalpha1-/- red blood cells (RBC) showed less deformability in response to shear stress limiting their membrane flexibility. Thus, our results highlight the crucial role of AMPK to preserve RBC integrity.


Asunto(s)
Proteínas Quinasas Activadas por AMP/sangre , Deformación Eritrocítica/fisiología , Proteínas Quinasas Activadas por AMP/deficiencia , Proteínas Quinasas Activadas por AMP/genética , Anemia/sangre , Anemia/enzimología , Anemia/genética , Animales , Trasplante de Médula Ósea , Deformación Eritrocítica/genética , Eritropoyesis , Hematopoyesis Extramedular , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Fragilidad Osmótica , Esplenectomía , Esplenomegalia/sangre , Esplenomegalia/enzimología , Esplenomegalia/genética
6.
Blood ; 115(18): 3686-94, 2010 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-20223923

RESUMEN

The mitogen-activated protein kinases (MAPKs) extracellular signal-regulated kinase 1 (ERK1) and ERK2 are among the main signal transduction molecules, but little is known about their isoform-specific functions in vivo. We have examined the role of ERK1 in adult hematopoiesis with ERK1(-/-) mice. Loss of ERK1 resulted in an enhanced splenic erythropoiesis, characterized by an accumulation of erythroid progenitors in the spleen, without any effect on the other lineages or on bone marrow erythropoiesis. This result suggests that the ablation of ERK1 induces a splenic stress erythropoiesis phenotype. However, the mice display no anemia. Deletion of ERK1 did not affect erythropoietin (EPO) serum levels or EPO/EPO receptor signaling and was not compensated by ERK2. Splenic stress erythropoiesis response has been shown to require bone morphogenetic protein 4 (BMP4)-dependent signaling in vivo and to rely on the expansion of a resident specialized population of erythroid progenitors, termed stress erythroid burst-forming units (BFU-Es). A great expansion of stress BFU-Es and increased levels of BMP4 mRNA were found in ERK1(-/-) spleens. The ERK1(-/-) phenotype can be transferred by bone marrow cells. These findings show that ERK1 controls a BMP4-dependent step, regulating the steady state of splenic erythropoiesis.


Asunto(s)
Anemia/patología , Células Precursoras Eritroides/fisiología , Eritropoyesis/fisiología , Proteína Quinasa 3 Activada por Mitógenos/fisiología , Bazo/metabolismo , Anemia/inducido químicamente , Animales , Apoptosis , Western Blotting , Trasplante de Médula Ósea , Proteína Morfogenética Ósea 4/genética , Proteína Morfogenética Ósea 4/metabolismo , Ensayo de Unidades Formadoras de Colonias , Células Precursoras Eritroides/citología , Eritropoyetina/metabolismo , Citometría de Flujo , Ratones , Ratones Endogámicos C57BL , Oxidantes/toxicidad , Fenilhidrazinas/toxicidad , ARN Mensajero/genética , ARN Mensajero/metabolismo , Receptores de Eritropoyetina/genética , Receptores de Eritropoyetina/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Transducción de Señal , Bazo/citología
7.
Blood ; 107(8): 3106-13, 2006 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-16368886

RESUMEN

The extracellular signal-regulated kinases (ERKs) are required for thrombopoietin (TPO) functions on hematopoietic cells, but the ERKs targets involved remain unknown. Here we show that the regulation of the immediate early gene X-1 (IEX-1), identified as an ERK substrate in response to TPO, was mediated by an ERK-dependent phosphorylation of AML1. The addition of TPO to UT7-Mpl cells and primary megakaryocytes induced gene expression of IEX-1. Neither erythropoietin (EPO) nor granulocyte macrophage-colony stimulating factor (GM-CSF) was able to activate IEX-1 gene expression in UT7-Mpl cells. The induced expression was mediated by a transcriptional activation of the IEX-1 promoter and required an AML1-binding site located at -1068. The direct involvement of AML1 in the regulation of IEX-1 gene expression was shown by both the use of AML1 mutants and by shRNA experiments targeting endogenous AML1. Finally, the ability of TPO to induce the IEX-1 gene expression was inhibited by U0126, a specific inhibitor of the ERKs activator MEK and AML1 transcriptional activity was shown to be modulated by TPO through ERK-dependent phosphorylation. Taken together, these data suggest that AML1 plays a role in modulating the IEX-1 expression and that the ERK-dependent AML1 phosphorylation regulates the TPO-mediated activation of IEX-1.


Asunto(s)
Subunidad alfa 2 del Factor de Unión al Sitio Principal/metabolismo , Regulación de la Expresión Génica/efectos de los fármacos , Proteínas Inmediatas-Precoces/biosíntesis , Megacariocitos/metabolismo , Proteínas de Neoplasias/biosíntesis , Procesamiento Proteico-Postraduccional/efectos de los fármacos , Trombopoyetina/farmacología , Proteínas Reguladoras de la Apoptosis , Butadienos/farmacología , Línea Celular Tumoral , Subunidad alfa 2 del Factor de Unión al Sitio Principal/genética , Inhibidores Enzimáticos/farmacología , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Regulación de la Expresión Génica/fisiología , Humanos , Quinasas Quinasa Quinasa PAM/antagonistas & inhibidores , Quinasas Quinasa Quinasa PAM/metabolismo , Megacariocitos/citología , Proteínas de la Membrana , Mutación , Nitrilos/farmacología , Fosforilación/efectos de los fármacos , Procesamiento Proteico-Postraduccional/fisiología , Elementos Reguladores de la Transcripción/fisiología , Trombopoyetina/metabolismo , Transcripción Genética/efectos de los fármacos , Transcripción Genética/inmunología
8.
J Immunol ; 171(9): 4853-9, 2003 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-14568965

RESUMEN

It was recently shown that vascular endothelial growth factor (VEGF), a growth factor for endothelial cells, plays a pivotal role in rheumatoid arthritis. VEGF binds to specific receptors, known as VEGF-RI and VEGF-RII. We assessed the physical and histological effects of selective blockade of VEGF and its receptors in transgenic K/BxN mice, a model of rheumatoid arthritis very close to the human disease. Mice were treated with anti-mouse VEGF Ab, anti-mouse VEGF-RI and -RII Abs, and an inhibitor of VEGF-RI tyrosine kinase. Disease activity was monitored using clinical indexes and by histological examination. We found that synovial cells from arthritic joints express VEGF, VEGF-RI, and VEGF-RII. Treatment with anti-VEGF-RI strongly attenuated the disease throughout the study period, while anti-VEGF only transiently delayed disease onset. Treatment with anti-VEGF-RII had no effect. Anti-VEGF-RI reduced the intensity of clinical manifestations and, based on qualitative and semiquantitative histological analyses, prevented joint damage. Treatment with a VEGF-RI tyrosine kinase inhibitor almost abolished the disease. These results show that VEGF is a key factor in pannus development, acting through the VEGF-RI pathway. The observation that in vivo administration of specific inhibitors targeting the VEGF-RI pathway suppressed arthritis and prevented bone destruction opens up new possibilities for the treatment of rheumatoid arthritis.


Asunto(s)
Artritis Experimental/patología , Artritis Experimental/prevención & control , Artritis Reumatoide , Receptor 1 de Factores de Crecimiento Endotelial Vascular/antagonistas & inhibidores , Receptor 1 de Factores de Crecimiento Endotelial Vascular/fisiología , Receptor 2 de Factores de Crecimiento Endotelial Vascular/fisiología , Animales , Artritis Experimental/genética , Artritis Experimental/metabolismo , Artritis Reumatoide/metabolismo , Artritis Reumatoide/patología , Artritis Reumatoide/prevención & control , Cruzamientos Genéticos , Modelos Animales de Enfermedad , Femenino , Sueros Inmunes/administración & dosificación , Inyecciones Intravenosas , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos NOD , Ratones Transgénicos , Compuestos Orgánicos/administración & dosificación , ARN Mensajero/biosíntesis , ARN Mensajero/metabolismo , Proteínas Tirosina Quinasas Receptoras/antagonistas & inhibidores , Membrana Sinovial/metabolismo , Membrana Sinovial/patología , Factores de Tiempo , Receptor 1 de Factores de Crecimiento Endotelial Vascular/genética , Receptor 1 de Factores de Crecimiento Endotelial Vascular/inmunología , Receptor 2 de Factores de Crecimiento Endotelial Vascular/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA