Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Tipo de estudio
Intervalo de año de publicación
1.
Mar Environ Res ; 190: 106108, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37506652

RESUMEN

Port areas are subjected to multiple anthropic pressures that directly impact residing marine communities and deprive them of most of their essential ecological functions. Several global projects aim to rehabilitate certain ecosystem functions in port areas, such as a fish nursery function, by installing artificial fish nurseries (AFN). In theory, AFNs increase fish biodiversity and juvenile fish abundance in port areas, but studies on this subject remain scarce. Thus, the present study aimed to examine whether the use of such AFNs could restore part of the nursery function of natural habitats by increasing fish and juvenile abundance, and by decreasing predation intensity compared to bare docks. Two years of monitoring on AFNs showed they hosted 2.1 times more fish than on control docks and up to 2.4 more fish juveniles. Fish community structures were influenced by both treatment (AFN and Control) and year of monitoring. In general, AFNs hosted a greater taxonomic diversity of fish than controls. The predation intensity around these structures was significantly lower in the AFNs than in controls. Part of the definition of a fish nursery was thus verified, indicating that AFNs might be an effective restoration tool. However, we also noted that total fish abundance and Young of the Year (YOY) abundance decreased in controls, possibly due to a concentration effect. Further detailed monitoring is necessary to distinguish between these effects.


Asunto(s)
Ecosistema , Casas Cuna , Animales , Humanos , Lactante , Peces , Biodiversidad
2.
Mar Environ Res ; 185: 105859, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36680811

RESUMEN

Increasingly, ecological rehabilitation is envisioned to mitigate and revert impacts of ocean sprawl on coastal marine biodiversity. While in the past studies have demonstrated the positive effects of artificial fish habitats in port areas on fish abundance and diversity, benthic colonization of these structures has not yet been taken into consideration. This could be problematic as they may provide suitable habitat for Non-Indigenous Species (NIS) and hence facilitate their spreading. The present study aimed to examine communities developing on artificial fish habitats and to observe if the number of NIS was higher than in surrounding equivalent habitats. The structures were colonized by communities that were significantly different compared to those surrounding the control habitat, and they were home to a greater number of NIS. As NIS can cause severe ecological and economical damages, our results imply that in conjunction with the ecosystem services provided by artificial fish habitats, an ecosystem disservice in the form of facilitated NIS colonization may be present. These effects have not been shown before and need to be considered to effectively decide in which situations artificial structures may be used for fish rehabilitation.


Asunto(s)
Ecosistema , Especies Introducidas , Animales , Biodiversidad , Peces
3.
J Chem Ecol ; 48(9-10): 761-771, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36100819

RESUMEN

Climate change constitutes a major challenge for marine urban ecosystems and ocean warming will likely strongly affect local communities. Non-Indigenous Species (NIS) have been shown to often have higher heat resistance than natives, but studies investigating how forthcoming global warming might affect them in marine urban environments remain scarce, especially in Situ studies. Here we used an in Situ warming experiment in a NW Mediterranean (warm temperate) and a NE Atlantic (cold temperate) marina to see how global warming might affect recruited communities in the near future. In both marinas, warming resulted in significantly different community structure, lower biomass, and more empty space compared to control. However, while in the warm temperate marina, NIS showed an increased surface cover, it was reduced in the cold temperate one. Metabolomic analyses on Bugula neritina in the Atlantic marina revealed potential heat stress experienced by this introduced bryozoan and a potential link between heat stress and the expression of a halogenated alkaloid, Caelestine A. The present results might indicate that the effects of global warming on the prevalence of NIS may differ between geographical provinces, which could be investigated by larger scale studies.


Asunto(s)
Cambio Climático , Ecosistema , Biomasa , Temperatura
4.
Sci Total Environ ; 838(Pt 1): 155911, 2022 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-35577087

RESUMEN

Urbanization of coastal habitats, of which harbors and marinas are the paragon, has led to various ecological paradigms about their functioning. Harbor infrastructures offer new hard substrata that are colonized by a wide variety of organisms (biofouling) including many introduced species. These structures also modify hydrodynamism and contaminant dispersal, leading to strong disturbance gradients within them. Differences in sessile community structure have previously been correlated to these gradients at small spatial scale (<100 m). Local adaptation might be involved to explain such results, but as correlation is not causation, the present study aims to understand the causal link between the environmental gradients and community structure through a reciprocal transplant experiment among three sites of a marina (inner, middle, entrance). Our results highlighted strong small-scale spatial variations of contaminants (trace metals, PCB, pesticides, and PAH) in sediments and animal samples which have been causally linked to changes in community composition after transplant. But historical contingency and colonization succession also play an important role. Our results provided strong evidence for local adaptation since community structure, respiration, and pollutant uptake in Bugula neritina, as well as the metabolomes of B. neritina and Ciona intestinalis were impacted by the transplant with a disadvantage for individuals transplanted from the entrance to the inner location. The here observed results may thus indicate that the disturbance gradient in marinas might constitute a staple for selecting pollutant-resistant species and populations, causing local adaptation. This highlights the importance of conducting further studies into small scale local adaptation.


Asunto(s)
Ecosistema , Contaminantes Ambientales , Adaptación Fisiológica , Animales , Especies Introducidas , Urbanización
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...