Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cogn Neurodyn ; 14(3): 301-321, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32399073

RESUMEN

We developed a brain-computer interface (BCI) able to continuously monitor working memory (WM) load in real-time (considering the last 2.5 s of brain activity). The BCI is based on biomarkers derived from spectral properties of non-invasive electroencephalography (EEG), subsequently classified by a linear discriminant analysis classifier. The BCI was trained on a visual WM task, tested in a real-time visual WM task, and further validated in a real-time cross task (mental arithmetic). Throughout each trial of the cross task, subjects were given real or sham feedback about their WM load. At the end of the trial, subjects were asked whether the feedback provided was real or sham. The high rate of correct answers provided by the subjects validated not only the global behaviour of the WM-load feedback, but also its real-time dynamics. On average, subjects were able to provide a correct answer 82% of the time, with one subject having 100% accuracy. Possible cognitive and motor confounding factors were disentangled to support the claim that our EEG-based markers correspond indeed to WM.

2.
Cogn Neurodyn ; 13(3): 257-269, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-31168330

RESUMEN

We introduce a cognitive brain-computer interface based on a continuous performance task for the monitoring of variations of visual sustained attention, i.e. the self-directed maintenance of cognitive focus in non-arousing conditions while possibly ignoring distractors and avoiding mind wandering. We introduce a visual sustained attention continuous performance task with three levels of task difficulty. Pairwise discrimination of these task difficulties from electroencephalographic features was performed using a leave-one-subject-out cross validation approach. Features were selected using the orthogonal forward regression supervised feature selection method. Cognitive load was best predicted using a combination of prefrontal theta power, broad spatial range gamma power, fronto-central beta power, and fronto-central alpha power. Generalization performance estimates for pairwise classification of task difficulty using these features reached 75% for 5 s epochs, and 85% for 30 s epochs.

3.
Artículo en Inglés | MEDLINE | ID: mdl-25570052

RESUMEN

Steady-state visual evoked potentials (SSVEPs) are widely used in the design of brain-computer interfaces (BCIs). A lot of effort has therefore been devoted to find a fast and reliable way to detect SSVEPs. We study the link between transient and steady-state VEPs and show that it is possible to predict the spectral content of a subject's SSVEPs by simulating trains of transient VEPs. This could lead to a better understanding of evoked potentials as well as to better performances of SSVEP-based BCIs, by providing a tool to improve SSVEP detection algorithms.


Asunto(s)
Encéfalo/fisiología , Potenciales Evocados Visuales , Adulto , Algoritmos , Interfaces Cerebro-Computador , Electroencefalografía , Femenino , Humanos , Masculino , Procesamiento de Señales Asistido por Computador
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...