Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Indian J Med Res ; 158(4): 439-446, 2023 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-38006347

RESUMEN

BACKGROUND OBJECTIVES: Acinetobacter baumannii has emerged as a nosocomial pathogen with a tendency of high antibiotic resistance and biofilm production. This study aimed to determine the occurrence of A. baumannii from different clinical specimens of suspected bacterial infections and furthermore to see the association of biofilm production with multidrug resistance and expression of virulence factor genes in A. baumannii. METHODS: A. baumannii was confirmed in clinical specimens by the detection of the blaOXA-51-like gene. Biofilm production was tested by microtitre plate assay and virulence genes were detected by real-time PCR. RESULTS: A. baumannii was isolated from a total of 307 clinical specimens. The isolate which showed the highest number of A. baumannii was an endotracheal tube specimen (44.95%), then sputum (19.54%), followed by pus (17.26%), urine (7.49%) and blood (5.86%), and <2 per cent from body fluids, catheter-tips and urogenital specimens. A resistance rate of 70-81.43 per cent against all antibiotics tested, except colistin and tigecycline, was noted, and 242 (78.82%) isolates were multidrug-resistant (MDR). Biofilm was detected in 205 (66.78%) with a distribution of 54.1 per cent weak, 10.42 per cent medium and 2.28 per cent strong biofilms. 71.07 per cent of MDR isolates produce biofilm (P<0.05). Amongst virulence factor genes, 281 (91.53%) outer membrane protein A (OmpA) and 98 (31.92%) biofilm-associated protein (Bap) were detected. Amongst 100 carbapenem-resistant A. baumannii, the blaOXA-23-like gene was predominant (96%), the blaOXA-58-like gene (6%) and none harboured the blaOXA-24-like gene. The metallo-ß-lactamase genes blaIMP-1 (4%) and blaVIM-1(8%) were detected, and 76 per cent showed the insertion sequence ISAba1. INTERPRETATION CONCLUSIONS: The majority of isolates studied were from lower respiratory tract specimens. The high MDR rate and its positive association with biofilm formation indicate the nosocomial distribution of A. baumannii. The biofilm formation and the presence of Bap were not interrelated, indicating that biofilm formation was not regulated by a single factor. The MDR rate and the presence of OmpA and Bap showed a positive association (P<0.05). The isolates co-harbouring different carbapenem resistance genes were the predominant biofilm producers, which will seriously limit the therapeutic options suggesting the need for strict antimicrobial stewardship and molecular surveillance in hospitals.


Asunto(s)
Acinetobacter baumannii , Infecciones Bacterianas , Infección Hospitalaria , Humanos , Virulencia/genética , Farmacorresistencia Bacteriana Múltiple/genética , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Carbapenémicos/farmacología , Carbapenémicos/uso terapéutico , beta-Lactamasas/genética , Factores de Virulencia/genética , Biopelículas , Infección Hospitalaria/microbiología , Proteínas Bacterianas/genética , Pruebas de Sensibilidad Microbiana
2.
PeerJ ; 11: e15590, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37529215

RESUMEN

The biosynthesis of nanoparticles using the green route is an effective strategy in nanotechnology that provides a cost-effective and environmentally friendly alternative to physical and chemical methods. This study aims to prepare an aqueous extract of Ocimum sanctum (O. sanctum)-based silver nanoparticles (AgNPs) through the green route and test their antibacterial activity. The biosynthesized silver nanoparticles were characterised by colour change, UV spectrometric analysis, FTIR, and particle shape and size morphology by SEM and TEM images. The nanoparticles are almost spherical to oval or rod-shaped with smooth surfaces and have a mean particle size in the range of 55 nm with a zeta potential of -2.7 mV. The antibacterial activities of AgNPs evaluated against clinically isolated multidrug-resistant Acinetobacter baumannii (A. baumannii) showed that the AgNPs from O. sanctum are effective in inhibiting A. baumannii growth with a zone of inhibition of 15 mm in the agar well diffusion method and MIC and MBC of 32 µg/mL and 64 µg/mL, respectively. The SEM images of A. baumannii treated with AgNPs revealed damage and rupture in bacterial cells. The time-killing assay by spectrophotometry revealed the time- and dose-dependent killing action of AgNPs against A. baumannii, and the assay at various concentrations and time intervals indicated a statistically significant result in comparison with the positive control colistin at 2 µg/mL (P < 0.05). The cytotoxicity test using the MTT assay protocol showed that prepared nanoparticles of O. sanctum are less toxic against human cell A549. This study opens up a ray of hope to explore the further research in this area and to improve the antimicrobial activities against multidrug resistant bacteria.


Asunto(s)
Acinetobacter baumannii , Acinetobacter calcoaceticus , Nanopartículas del Metal , Humanos , Nanopartículas del Metal/uso terapéutico , Plata/farmacología , Ocimum sanctum , Antibacterianos/farmacología
3.
Biology (Basel) ; 11(9)2022 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-36138822

RESUMEN

Acinetobacter species is one of the most prevailing nosocomial pathogens with a potent ability to develop antimicrobial resistance. It commonly causes infections where there is a prolonged utilization of medical devices such as CSF shunts, catheters, endotracheal tubes, and similar. There are several strains of Acinetobacter (A) species (spp), among which the majority are pathogenic to humans, but A. baumannii are entirely resistant to several clinically available antibiotics. The crucial mechanism that renders them a multidrug-resistant strain is their potent ability to synthesize biofilms. Biofilms provide ample opportunity for the microorganisms to withstand the harsh environment and further cause chronic infections. Several studies have enumerated multiple physiological and virulence factors responsible for the production and maintenance of biofilms. To further enhance our understanding of this pathogen, in this review, we discuss its taxonomy, pathogenesis, current treatment options, global resistance rates, mechanisms of its resistance against various groups of antimicrobials, and future therapeutics.

4.
Artículo en Inglés | MEDLINE | ID: mdl-33206862

RESUMEN

Acinetobacter baumannii is one of the most frequent nosocomial pathogen capable of acquiring resistance to different antimicrobials. The aim of this study was to investigate the activity of tetracycline, doxycycline and minocycline, the prevalence of tet(A) and tet(B) determinants, and the role of efflux pump in tetracycline resistance among the A. baumannii clinical isolates. Susceptibility of 98 A. baumannii isolates to tetracyclines was evaluated by disk diffusion method. The presence of active efflux pump was investigated by determination of the minimum inhibitory concentration (MIC) of tetracycline using the carbonyl cyanide 3-chlorophenylhydrazone (CCCP). Polymerase chain reaction (PCR) was performed to investigate the presence of tet(A) and tet(B) determinants in tetracycline-resistant isolates. The rate of resistance to tetracycline, doxycycline and minocycline was 47.95%, 0%, and 30.61%, respectively. Among the 47 tetracycline-resistant isolates, 29.79% were originated from burned patients and showed MIC ranging from 128-256 µg/mL with both MIC 50 and MIC90 values of 256 µg/mL, while 70.21% were from ventilator-associated pneumonia (VAP) patients and had MIC values ranging from 32-1024 µg/mL, with MIC50 and MIC90 of 512 µg/mL and 1024 µg/mL, respectively. The tet(B) gene was found in 61.7% of tetracycline-resistant isolates, while none of the isolates carried the tet(A) gene. CCCP led to 2-128-fold reduction in tetracycline MIC of the tested isolates. The results showed that doxycycline and minocycline are promising agents for the treatment of A. baumannii infections. This study has also revealed the role of efflux activity in the resistance to tetracycline of A. baumannii isolates. The emergence of resistance to these agents is likely due to the spread of clones presenting with a higher prevalence of resistance determinants.


Asunto(s)
Acinetobacter baumannii , Antiportadores/genética , Proteínas Bacterianas/genética , Resistencia a la Tetraciclina/genética , Acinetobacter baumannii/efectos de los fármacos , Acinetobacter baumannii/genética , Antibacterianos/farmacología , Doxiciclina/farmacología , Humanos , Pruebas de Sensibilidad Microbiana , Minociclina/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...