Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Br J Pharmacol ; 175(9): 1419-1438, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29272550

RESUMEN

BACKGROUND AND PURPOSE: Chemokines and their receptors form an intricate interaction and signalling network that plays critical roles in various physiological and pathological cellular processes. The high promiscuity and apparent redundancy of this network makes probing individual chemokine/receptor interactions and functional effects, as well as targeting individual receptor axes for therapeutic applications, challenging. Despite poor sequence identity, the N-terminal regions of chemokines, which play a key role in their activity and selectivity, contain several conserved features. Thus far little is known regarding the molecular basis of their interactions with typical and atypical chemokine receptors or the conservation of their contributions across chemokine-receptor pairs. EXPERIMENTAL APPROACH: We used a broad panel of chemokine variants and modified peptides derived from the N-terminal region of chemokines CXCL12, CXCL11 and vCCL2, to compare the contributions of various features to binding and activation of their shared receptors, the two typical, canonical G protein-signalling receptors, CXCR4 and CXCR3, as well as the atypical scavenger receptor CXCR7/ACKR3, which shows exclusively arrestin-dependent activity. KEY RESULTS: We provide molecular insights into the plasticity of the ligand-binding pockets of these receptors, their chemokine binding modes and their activation mechanisms. Although the chemokine N-terminal region is a critical determinant, neither the most proximal residues nor the N-loop are essential for binding and activation of ACKR3, as distinct from binding and activation of CXCR4 and CXCR3. CONCLUSION AND IMPLICATIONS: These results suggest a different interaction mechanism between this atypical receptor and its ligands and illustrate its strong propensity to activation.


Asunto(s)
Sitios de Unión , Péptidos/metabolismo , Unión Proteica , Receptores CXCR3/metabolismo , Receptores CXCR4/metabolismo , Receptores CXCR/metabolismo , Animales , Arrestina/metabolismo , Células Cultivadas , Quimiocina CXCL11/metabolismo , Quimiocina CXCL12/metabolismo , Humanos , Ligandos , Ensayo de Unión Radioligante
2.
Biochem Pharmacol ; 114: 53-68, 2016 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-27106080

RESUMEN

Chemokine receptor (CKR) signaling forms the basis of essential immune cellular functions, and dysregulated CKR signaling underpins numerous disease processes of the immune system and beyond. CKRs, which belong to the seven transmembrane domain receptor (7TMR) superfamily, initiate signaling upon binding of endogenous, secreted chemokine ligands. Chemokine-CKR interactions are traditionally described by a two-step/two-site mechanism, in which the CKR N-terminus recognizes the chemokine globular core (i.e. site 1 interaction), followed by activation when the unstructured chemokine N-terminus is inserted into the receptor TM bundle (i.e. site 2 interaction). Several recent studies challenge the structural independence of sites 1 and 2 by demonstrating physical and allosteric links between these supposedly separate sites. Others contest the functional independence of these sites, identifying nuanced roles for site 1 and other interactions in CKR activation. These developments emerge within a rapidly changing landscape in which CKR signaling is influenced by receptor PTMs, chemokine and CKR dimerization, and endogenous non-chemokine ligands. Simultaneous advances in the structural and functional characterization of 7TMR biased signaling have altered how we understand promiscuous chemokine-CKR interactions. In this review, we explore new paradigms in CKR signal transduction by considering studies that depict a more intricate architecture governing the consequences of chemokine-CKR interactions.


Asunto(s)
Quimiocinas/metabolismo , Modelos Moleculares , Receptores de Quimiocina/metabolismo , Transducción de Señal/inmunología , Animales , Sitios de Unión , Humanos , Unión Proteica , Procesamiento Proteico-Postraduccional , Estructura Terciaria de Proteína
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...