Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 15(1): 2774, 2024 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-38555288

RESUMEN

The rational design of carbon-supported transition-metal single-atom catalysts requires the precise arrangement of heteroatoms within the single-atom catalysts. However, achieving this design is challenging due to the collapse of the structure during the pyrolysis. Here, we introduce a topological heteroatom-transfer strategy to prevent the collapse and accurately control the P coordination in carbon-supported single-atom catalysts. As an illustration, we have prepared self-assembled helical fibers with encapsulated cavities. Within these cavities, adjustable functional groups can chelate metal ions (Nx···Mn+···Oy), facilitating the preservation of the structure during the pyrolysis based phosphidation. This process allows for the transfer of heteroatoms from the assembly into single-atom catalysts, resulting in the precise coordination tailoring. Notably, the Co-P2N2-C catalyst exhibits electrocatalytic performance as a non-noble metal single-atom catalyst for alkaline hydrogen evolution, attaining a current density of 100 mA cm-2 with an overpotential of only 131 mV.

2.
Small ; 20(5): e2306481, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37759386

RESUMEN

Selecting a set of reactants to accurately design a new low dimensional hybrid perovskite could greatly accelerate the discovery of materials with great potential in photovoltaics, or solid-state lighting. However, this design is challenging as most hybrid metal halides are not perovskites and no feature is clearly associated to the structural characteristics of the inorganic metal halide network. This work first demonstrates that the organic molecules are key parameters to determine the structure type of the inorganic network (i.e., perovskite versus non-perovskite). Then, machine learning (ML) algorithms are used to identify the key features of the organic cations leading to the perovskite structure type. Using a large dataset of hybrid metal halides, this work extracts the organic molecules of all hybrid lead halide compounds, calculates 2756 molecular descriptors and fingerprints for each of these molecules, and are able to predict through ML techniques if a specific organic amine will lead to the perovskite type with an accuracy up to 88.65%. Descriptors related to hydrogen bonding are identified as important features. Thus, a simple but reliable design principle could be demonstrated: the presence of primary ammonium cation is the primary condition to prepare hybrid lead halide perovskites regardless of their dimensionalities.

3.
Inorg Chem ; 62(35): 14252-14260, 2023 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-37606625

RESUMEN

A series of monolayered lead halide hybrid perovskites (HO2C(CH2)n-1NH3)2PbX4, named (Cn)2PbX4 (n = 4-6, X = Cl, Br), exhibiting a low congruent melting temperature (Tm) (Tm = 130 °C for (C4)2PbBr4), high stability in the molten state, and whitish type emission, are reported. From the synthesis in the molten state, rare solid solutions of mixed organic cations (Cn1-xCn'x)2PbX4 (n, n' = 4-6; X = Cl, Br; 0 ≤ x ≤1) as well as solid solutions of mixed halides (Cn)2Pb(X1-yX'y)4 (n = 4-6; X, X' = Cl, Br; 0 ≤ y ≤1) have been prepared and characterized (thermal behavior, powder X-ray diffraction (PXRD), photoluminescence properties). The impact of substitutions is significant on the thermal properties, lowering the Tm down to 100 °C for (C4)2Pb(Br0.25Cl0.75)4. The emission properties are slightly tuned in the case of mixed organic cation systems, whereas modifications are more dramatic in the case of mixed halide systems, leading to emission properties through the entire visible region. These results illustrate the great opportunities offered by the congruent melting properties of halide perovskites allowing syntheses in the molten state.

4.
J Am Chem Soc ; 145(30): 16879-16888, 2023 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-37486820

RESUMEN

The design of noncentrosymmetric (NCS) solid state materials, specifically how to break inversion symmetry between enantiomers, has intrigued chemists, physicists, and materials scientists for many years. Because the chemical complexity of molecular racemic building units is so varied, targeting these materials is poorly understood. Previously, three isostructural racemic compounds with a formula of [Cu(H2O)(bpy)2]2[MF6]2·2H2O (bpy = 2,2'=bipyridine; M = Ti, Zr, Hf) were shown to crystallize in the NCS space group Pna21, of polar, achiral crystal class mm2. In this work, we synthesized five new racemic compounds with the formula [Cu(H2O)(dmbpy)2]2[MF6]2·xH2O (dmbpy = 4,4'/5,5'-dimethyl-2,2'-bipyridine; M = Ti, Zr, Hf). Single crystal X-ray diffraction reveals that the five newly synthesized compounds feature equimolar combinations of Δ- and Λ-Cu(dmbpy)2(H2O)2+ complexes that are assembled into packing motifs similar to those found in the reported NCS structure but all crystallize in centrosymmetric (CS) space groups. Seven structural descriptors were created to analyze the intermolecular interactions on the assembly of Cu racemates in the CS and NCS structures. The structural analysis reveals that in the CS structures, the inversion center results from parallel heterochiral π-π stacking interactions between adjacent Cu racemates regardless of cation geometries, hydrogen bonding networks, or interlayer architectures, whereas in the NCS structure, nonparallel heterochiral π-π interactions between the adjacent Cu racemates preclude an inversion center. The parallel heterochiral π-π interactions in the CS structures can be rationalized by the restrained geometries of the methyl-substituted ligands. This work demonstrates that the introduction of nonparallel stacking can suppress the formation of an inversion center for an NCS racemate. A conceptual framework and practical approach linking the absence of inversion symmetry in racemates is presented for all NCS crystal classes.

5.
Contact (Thousand Oaks) ; 6: 25152564231183897, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37455812

RESUMEN

When considering the vesicle-associated membrane protein-associated protein (VAP) family, major receptors at the surface of the endoplasmic reticulum (ER), it appears that VAP-A and VAP-B paralogs largely overlap in structure and function, and that specific features to distinguish these two proteins hardly exist or are poorly documented. Here, we question the degree of redundancy between VAP-A and VAP-B: is one simply a backup plan, in case of loss of function of one of the two genes, or are there molecular and functional divergences that would explain their maintenance during evolution?

6.
iScience ; 26(6): 106887, 2023 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-37324528

RESUMEN

Lithium (Li) has a wide range of uses in science, medicine, and industry, but its isotopy is underexplored, except in nuclear science and in geoscience. 6Li and 7Li isotopic ratio exhibits the second largest variation on earth's surface and constitutes a widely used tool for reconstructing past oceans and climates. As large variations have been measured in mammalian organs, plants or marine species, and as 6Li elicits stronger effects than natural Li (∼95% 7Li), a central issue is the identification and quantification of biological influence of Li isotopes distribution. We show that membrane ion channels and Na+-Li+/H+ exchangers (NHEs) fractionate Li isotopes. This systematic 6Li enrichment is driven by membrane potential for channels, and by intracellular pH for NHEs, where it displays cooperativity, a hallmark of dimeric transport. Evidencing that transport proteins discriminate between isotopes differing by one neutron opens new avenues for transport mechanisms, Li physiology, and paleoenvironments.

7.
J Mater Chem B ; 11(18): 3979-3984, 2023 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-37078201

RESUMEN

Silver nanoparticles are known and widely used for their antimicrobial activities. Nevertheless, once they are released into the natural or biological environments, they can become toxic with time, because of the dissolution of some Ag(I) ions that can then react with thiol-based molecules, such as glutathione and/or compete with copper proteins. These assumptions are based on the high affinity of the soft acid Ag(I) and the soft base thiolates and the exchange reactions that are involved in complex physiological media. Here we synthesized and fully characterized two new 2D silver thiolate coordination polymers (CPs) that exhibit a reversible 2D-to-1D structural transformation in the presence of an excess of thiol molecules. This dimensionality change induces also a switch of the yellow emission of the Ag-thiolate CP. This study highlights that these highly stable silver-thiolate CPs, in basic, acidic and oxidant media can undergo a complete dissolution-recrystallization mechanism upon thiol exchange reactions.


Asunto(s)
Nanopartículas del Metal , Polímeros , Nanopartículas del Metal/química , Plata/química , Ligandos , Compuestos de Sulfhidrilo/química
8.
Dev Cell ; 58(2): 121-138.e9, 2023 01 23.
Artículo en Inglés | MEDLINE | ID: mdl-36693319

RESUMEN

Membrane contact sites (MCSs) are heterogeneous in shape, composition, and dynamics. Despite this diversity, VAP proteins act as receptors for multiple FFAT motif-containing proteins and drive the formation of most MCSs that involve the endoplasmic reticulum (ER). Although the VAP-FFAT interaction is well characterized, no model explains how VAP adapts to its partners in various MCSs. We report that VAP-A localization to different MCSs depends on its intrinsically disordered regions (IDRs) in human cells. VAP-A interaction with PTPIP51 and VPS13A at ER-mitochondria MCS conditions mitochondria fusion by promoting lipid transfer and cardiolipin buildup. VAP-A also enables lipid exchange at ER-Golgi MCS by interacting with oxysterol-binding protein (OSBP) and CERT. However, removing IDRs from VAP-A restricts its distribution and function to ER-mitochondria MCS. Our data suggest that IDRs do not modulate VAP-A preference toward specific partners but do adjust their geometry to MCS organization and lifetime constraints. Thus, IDR-mediated VAP-A conformational flexibility ensures membrane tethering plasticity and efficiency.


Asunto(s)
Proteínas de la Membrana , Proteínas de Transporte Vesicular , Humanos , Proteínas de la Membrana/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Secuencias de Aminoácidos , Proteínas Portadoras/metabolismo , Lípidos/química
9.
Adv Mater ; 34(41): e2203879, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35963842

RESUMEN

Determining the crystal structure is a critical step in the discovery of new functional materials. This process is time consuming and requires extensive human expertise in crystallography. Here, a machine-learning-based approach is developed, which allows it to be determined automatically if an unknown material is of perovskite type from powder X-ray diffraction. After training a deep-learning model on a dataset of known compounds, the structure types of new unknown compounds can be predicted using their experimental powder X-ray diffraction patterns. This strategy is used to distinguish perovskite-type materials in a series of new hybrid lead halides. After validation, this approach is shown to accurately identify perovskites (accuracy of 92% with convolutional neural network). From the identification of the key features of the patterns used to discriminate perovskites versus nonperovskites, crystallographers can learn how to quickly identify low-dimensional perovskites from X-ray diffraction patterns.

10.
Inorg Chem ; 61(26): 10234-10241, 2022 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-35736661

RESUMEN

The strength and sign of superexchange interactions are often predicted on the basis of the bond angles between magnetic ions, but complications may arise in situations with a nontrivial arrangement of the magnetic orbitals. We report on a novel molecular tetramer compound [Cu(H2O)dmbpy]2[V2O2F8] (dmbpy = 4,4'-dimethyl-2,2'-bipyridyl) that is composed of triangular "CuV2" fragments and displays a spin gap behavior. By combining first-principles calculations and electronic models, we reveal that superexchange Cu-V interactions carry drastically different coupling strengths along two Cu-F-V pathways with comparable bond angles in the triangular "CuV2" fragment. Counterintuitively, their strong disparity is found to originate from the restricted symmetry of the half-filled Cu dx2-y2 orbital stabilized by the crystal field, leading to one dominating antiferromagnetic Cu-V coupling in each fragment. We revisit the magnetic properties of the reported spin-gapped chain compound [enH2]Cu(H2O)2[V2O2F8] (enH2 = ethylene diammonium) containing similar triangular "CuV2" fragments, and the magnetic behavior of the molecular tetramer and the chain compounds is rationalized as that of weakly coupled spin dimers and spin trimers, respectively. This work demonstrates that fundamentally different magnetic couplings can be observed between magnetic ions with similar bond angles in a single spin motif, thus providing a strategy to introduce various exchange interactions combined with low dimensionality in heterometallic Cu(II)-V(IV) compounds.

11.
Sci Adv ; 8(23): eabn8009, 2022 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-35687688

RESUMEN

A rotating interferometer with paths that enclose a physical area exhibits a phase shift proportional to this area and to the rotation rate of the frame. Understanding the origin of this so-called Sagnac effect has played a key role in the establishment of the theory of relativity and has pushed for the development of precision optical interferometers. The fundamental importance of the Sagnac effect motivated the realization of experiments to test its validity for waves beyond optical, but precision measurements remained a challenge. Here, we report the accurate test of the Sagnac effect for matter waves, by using a Cesium atom interferometer featuring a geometrical area of 11 cm2 and two sensitive axes of measurements. We measure the phase shift induced by Earth's rotation and find agreement with the theoretical prediction at an accuracy level of 25 parts per million. Beyond the importance for fundamental physics, our work opens practical applications in seismology and geodesy.

12.
Chem Commun (Camb) ; 58(58): 8081-8084, 2022 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-35765973

RESUMEN

A new tridimensional metal-organic chalcogenolate, made of a 1,3-benzenedithiolate bridging ligand and Ag(I), [Ag2(1,3-BDT)]n, is reported. This coordination polymer has good thermal stability in air and displays both photoluminescence properties and a second harmonic generation response.

13.
Dalton Trans ; 51(28): 10758-10762, 2022 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-35611961

RESUMEN

Templating effects are commonly investigated by comparing different organic structure-directing agents in a specific inorganic system. Herein, a specific secondary diamine, the trans-2,5-dimethylpiperazine, has been selected for different metal halide anions with the aim to analyze its influence on different inorganic networks. Thus, five new trans-2,5-dimethylpiperazine-1,4-diium based compounds with [CuBr4]2-, [CdBr4]2-, [CuBr2]-, [AgCl2]-, and [AgBr2]- have been synthesized, structurally characterized and compared to eight previously reported compounds containing [ZnCl4]2-, [ZnBr4]2-, [CoCl4]2-, [PbCl4]2-, [PbBr4]2-, [SnBr4]2-, [CuCl4]2-, and [CdCl4]2-. Despite the different crystal structures (space-groups, inorganic frameworks, etc.), the dimensionalities (from 0D to 2D) of the inorganic networks of these 13 hybrid materials could be rationalized according to only two parameters: the oxidation state (+1 or +2) and the coordination sphere (tetrahedron or octahedron) of the metal ions. The luminescence properties of the new hybrid silver bromide have been analyzed and discussed by comparing the luminescence mechanisms of the other previously reported trans-2,5-dimethylpiperazine-1,4-diium metal halides.

14.
Adv Mater ; 34(26): e2201887, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35426472

RESUMEN

Near-infrared (NIR) luminescence materials with broadband emissions are necessary for the development of light-emitting diodes (LEDs) based light sources. However, most known NIR-emitting materials are limited by their low external quantum efficiency. This work demonstrates how the photoluminescence quantum efficiency of europium-activated calcium oxide (CaO:Eu) NIR phosphor can be significantly improved and stabilized at operating temperatures of LEDs. A carbon paper wrapping technology is innovatively developed and used during the solid-state sintering to promote the reduction of Eu3+ into Eu2+ . In parallel, the oxygen vacancies in the CaO lattice are repaired utilizing GeO2 decomposition. Through this process, a record-high external quantum efficiency of 54.7% at 740 nm is obtained with a thermal stability greatly improved from 57% to 90% at 125 °C. The as-fabricated NIR-LEDs reach record photoelectric efficiency (100 mA@23.4%) and output power (100 mA @ 319.5 mW). This discovery of high-performance phosphors will open new research avenues for broadband NIR LED light sources in a variety of photonics applications.

15.
Arch Cardiovasc Dis ; 115(3): 151-159, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35277353

RESUMEN

BACKGROUND: Catheter ablation (CA) in children using fluoroscopy carries risks inherent to ionizing radiation exposure. AIMS: The objective of this study was to demonstrate the feasibility of using low frames rate during ablation in children to maximally decrease radiation dose. METHODS: Hundred sixty eight successive patients<18 years of age undergoing CA performed under a 3.75 frames/second rate were retrospectively included. Demographics, procedural and dosimetry data were analysed. The effective dose (ED) was evaluated in a subgroup of 14 patients. RESULTS: Median age and weight were 15 years and 54kg, 72% had WPW, 10% AV node reentrant tachycardia, 10% ventricular tachycardia (atrial tachycardia, flutter and atrial fibrillation for the other cases). Acute success was achieved in 98.5% without any complication. Median procedure and fluoroscopy duration were 120 and 16minutes. Median Dose Area Product (DAP) and Air Kerma were 2.46Gy.cm2 and 18 mGy respectively (2Gy.cm2 and 15 mGy for WPW ablation). A significant reduction of median DAP was noted over the years for WPW, from 3.1Gy.cm2 in 2011 to 1.4 in 2019. Median estimated ED was 0.19 mSv (0.03 to 1.64), falling into the range of yearly normal natural irradiation or caused by leasure or professional activity. CONCLUSION: Low frame rate fluoroscopy is a highly effective and safe approach in decreasing radiation exposure during CA in children without altering the success rate of the procedure. ED is low, similar to natural/leisure irradiation. This approach can be considered a good alternative to 3D-based procedures in terms of efficiency and radiation issues, at least for WPW ablations.


Asunto(s)
Ablación por Catéter , Taquicardia Supraventricular , Ablación por Catéter/efectos adversos , Ablación por Catéter/métodos , Niño , Fluoroscopía/efectos adversos , Fluoroscopía/métodos , Humanos , Dosis de Radiación , Estudios Retrospectivos , Taquicardia Supraventricular/etiología , Resultado del Tratamiento
16.
Adv Sci (Weinh) ; 8(19): e2101407, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34258883

RESUMEN

Designing new single-phase white phosphors for solid-state lighting is a challenging trial-error process as it requires to navigate in a multidimensional space (composition of the host matrix/dopants, experimental conditions, etc.). Thus, no single-phase white phosphor has ever been reported to exhibit both a high color rendering index (CRI - degree to which objects appear natural under the white illumination) and a tunable correlated color temperature (CCT). In this article, a novel strategy consisting in iterating syntheses, characterizations, and machine learning (ML) models to design such white phosphors is demonstrated. With the guidance of ML models, a series of luminescent hybrid lead halides with ultra-high color rendering (above 92) mimicking the light of the sunrise/sunset (CCT = 3200 K), morning/afternoon (CCT = 4200 K), midday (CCT = 5500 K), full sun (CCT = 6500K), as well as an overcast sky (CCT = 7000 K) are precisely designed.

17.
Nat Commun ; 12(1): 3459, 2021 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-34103503

RESUMEN

Membrane contact sites (MCS) are subcellular regions where two organelles appose their membranes to exchange small molecules, including lipids. Structural information on how proteins form MCS is scarce. We designed an in vitro MCS with two membranes and a pair of tethering proteins suitable for cryo-tomography analysis. It includes VAP-A, an ER transmembrane protein interacting with a myriad of cytosolic proteins, and oxysterol-binding protein (OSBP), a lipid transfer protein that transports cholesterol from the ER to the trans Golgi network. We show that VAP-A is a highly flexible protein, allowing formation of MCS of variable intermembrane distance. The tethering part of OSBP contains a central, dimeric, and helical T-shape region. We propose that the molecular flexibility of VAP-A enables the recruitment of partners of different sizes within MCS of adjustable thickness, whereas the T geometry of the OSBP dimer facilitates the movement of the two lipid-transfer domains between membranes.

18.
Biol Cell ; 113(7): 311-328, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33666950

RESUMEN

BACKGROUND INFORMATION: Comprehensive libraries of plasmids for SARS-CoV-2 proteins with various tags (e.g., Strep, HA, Turbo) are now available. They enable the identification of numerous potential protein-protein interactions between the SARS-CoV-2 virus and host proteins. RESULTS: We present here a large library of SARS CoV-2 protein constructs fused with green and red fluorescent proteins and their initial characterisation in various human cell lines including lung epithelial cell models (A549, BEAS-2B), as well as in budding yeast. The localisation of a few SARS-CoV-2 proteins matches their proposed interactions with host proteins. These include the localisation of Nsp13 to the centrosome, Orf3a to late endosomes and Orf9b to mitochondria. CONCLUSIONS AND SIGNIFICANCE: This library should facilitate further cellular investigations, notably by imaging techniques.


Asunto(s)
COVID-19/virología , Biblioteca de Péptidos , SARS-CoV-2/metabolismo , Proteínas Virales/metabolismo , Células A549 , Línea Celular , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Interacciones Microbiota-Huesped/fisiología , Humanos , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Microscopía Fluorescente , Dominios y Motivos de Interacción de Proteínas , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , SARS-CoV-2/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Imagen de Lapso de Tiempo , Proteínas Virales/genética , Proteína Fluorescente Roja
19.
Chemistry ; 27(3): 905-914, 2021 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-32721062

RESUMEN

Doped single-phase materials have been widely investigated owing to their easy to implement synthesis and the variety of their properties. This Minireview covers strategies for the co-stabilization and the ratio control of several oxidation states of dopants inserted in the same host. The tuning of the oxidation states of dopants opens up many possibilities for the optimization of specific properties and can be envisioned for various applications such as telecommunication, medicine, displays, lasers or lighting. Technics used for the quantification of each valence state of dopant are also emphasized, and the importance of high throughput methods for the discovery of efficient materials with dopants in multiple valence states is discussed.

20.
Chem Commun (Camb) ; 56(70): 10139-10142, 2020 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-32815967

RESUMEN

A methodology enabling the discovery of hybrid metal halide phosphors through the selection of structural networks, which exhibit a specific distorted environment of the metal ions associated with the self-trapping of excitons, is proposed. This approach is demonstrated with the synthesis of an efficient near-UV emitting hybrid cadmium halide phosphor.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...