Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Total Environ ; 918: 170734, 2024 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-38325455

RESUMEN

Daycare centers (DCCs) play an instrumental role in early childhood development, making them a significant indoor environment for a large number of children globally. Amidst routine DCC activities, young children are exposed to a myriad of volatile organic compounds (VOCs), potentially impacting their health. Therefore, this study aims to investigate the VOC emissions during typical DCCs activities and evaluate respective health risk assessments. Employing a full-scale experimental setup within a well-controlled climate chamber, research was conducted into VOC emissions during three typical DCC events: arts-and-crafts (painting, gluing, modeling), cleaning, and sleeping activities tied to mattresses. The research identified 96 distinct VOCs, grouped into twelve categories, from 20 different events examined. Each event exhibited a unique VOC fingerprint, pinpointing potential source tracers. Also, significant variations in VOC emissions from different events were demonstrated. For instance, under cool & dry conditions, acrylic painting recorded high total VOC concentrations of 808 µg/m3, whereas poster painting showed only 58 µg/m3. Given these disparities, the study emphasizes the critical need for carefully selecting arts-and-crafts materials and cleaning agents in DCCs to effectively reduce VOC exposure. It suggests ventilating new mattresses before use and regular mattress check-ups to mitigate VOCs exposure during naps. Importantly, it revealed that certain events resulted in VOC levels exceeding the 10-5 cancer risk thresholds for younger children. Specifically, tetrachloroethylene and styrene from used mattresses in cool & dry conditions, ethylene oxide from new mattresses in warm & humid conditions, and styrene, during sand modeling in both conditions, were the key compounds contributing to this risk. These findings highlight the critical need for age-specific health risk assessments in DCCs. This study highlights the significance of understanding the profiles of VOC emissions from indoor events in DCCs, emphasizing potential health implications and laying a solid foundation for future investigations in this field.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire Interior , Compuestos Orgánicos Volátiles , Preescolar , Niño , Humanos , Compuestos Orgánicos Volátiles/análisis , Medición de Riesgo , Clima , Estirenos , Contaminación del Aire Interior/análisis , Contaminantes Atmosféricos/análisis , Monitoreo del Ambiente
2.
Int J Biol Macromol ; 203: 601-609, 2022 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-35122799

RESUMEN

Nanofilters made with high adsorption freeze-dried modified cellulose nanofiber (CNF) aerogel were produced. The modification was made using functional groups containing phthalimide, and then their ability to adsorb particulate matter (PM) was evaluated and compared with the control filter (HEPA). The results showed that the highest adsorption of PM2.5 (99.95%) belonged to the nanofilters made of 1.5% phthalimide-modified CNF aerogel, and the lowest adsorption (76.66%) was related to the control samples. Moreover, based on the results, the nanofilter produced from freeze-dried phthalimide-modified CNF aerogel showed high filtration efficiency as well as excellent resistance to temperature and humidity. This modification enables the filter to operate in different environmental conditions, especially for particles less than 0.1 µm that are mainly responsible for reducing air quality, human health, air visibility, and climate change. In conclusion, we developed an environmentally friendly biodegradable nanofilter capable of high-performance filtration functions and structural stability in different environmental conditions.


Asunto(s)
Filtros de Aire , Nanofibras , Adsorción , Celulosa/química , Humanos , Nanofibras/química , Material Particulado
3.
Materials (Basel) ; 14(3)2021 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-33540818

RESUMEN

Due to the requirement for developing more sustainable constructions, natural fibers from agricultural wastes, such as coir fibers, have been increasingly used as an alternative in concrete composites. However, the influence of coir fibers on the hydration and shrinkage of cement-based materials is not clear. In addition, limited information about the reinforcing mechanisms of coir fibers in concrete can be found. The goal of this research is to investigate the effects of coir fibers on the hydration reaction, microstructure, shrinkages, and mechanical properties of cement-based light-weight aggregate concrete (LWAC). Treatments on coir fibers, namely Ca(OH)2 and nano-silica impregnation, are applied to further improve LWAC. Results show that leachates from fibers acting as a delayed accelerator promote cement hydration, and entrained water by fibers facilitates cement hydration during the whole process. The drying shrinkage of LWAC is increased by adding fibers, while the autogenous shrinkage decreases. The strength and toughness of LWAC are enhanced with fibers. Finally, three reinforcement mechanisms of coir fibers in cement composites are discussed.

4.
J Environ Manage ; 271: 110884, 2020 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-32778256

RESUMEN

This paper focuses on the functionalization of heterogeneous and highly contaminated waste material, namely bottom ashes (BA) with a particle size ≤ 125 µm that cannot be recycled with conventional treatments. The main goal of this study is to modify this waste into a valuable material that can be used in various applications, especially in the building sector. The complex mineralogical nature of this material was investigated with quantitative XRD, which confirms the presence of crystalline and amorphous phases such as silicates, carbonates, metallic oxides and amorphous glass. A hydrophobic modification was performed by using a fluorosilane grafting agent that utilizes the reactive surface sites of these minerals to form silanol bonds. Results showed that the 2.5% (m/m) of silane made the BA hydrophobic. Moreover, a thorough characterization showed that fluorosilane was well-grafted at the surface of the BA, with more than 60% of the fluorosilane chemisorbed on the surface. Additionally, the hydrophobic modification led to a significant decrease of the leaching of the contaminants (Cr, Cu, Mo and Sb) from the BA particles. Following this methodology, fine fraction of BA could be eventually used as a building material, preventing the landfill of this toxic waste.


Asunto(s)
Ceniza del Carbón , Incineración , Carbonatos , Materiales de Construcción , Residuos Sólidos
5.
Carbohydr Polym ; 230: 115571, 2020 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-31887944

RESUMEN

A novel process of using phthalimide to modify cellulose nanofibers (CNF) for CO2 adsorption was studied. The effectiveness of the modification was confirmed by ATR-IR. Phthalimide incorporation onto CNF was confirmed with the characteristic peaks of NH2, C-N, and ester bonding COO- was observable. The XPS analyses confirmed the presence of N1s peak in Ph-CNF, meaning that the hydroxyl groups reacted with the amino groups (NH2) of phthalimide on the CNF surface. Based on the results, surface modification and addition of phthalimide increased the specific surface area, but also decreased the overall porosity, size of pores and volume of pores. When the temperature, humidity, pressure, and airflow rate increased, the CO2 adsorption significantly increased. The CO2 adsorption of phthalimide-modified CNF was confirmed by ATR-IR spectroscopy as the characteristic peaks of HCO3-,NH3+ and ester bonding NCOO- were visible on the spectra.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...