Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Nano Lett ; 17(10): 6203-6209, 2017 10 11.
Artículo en Inglés | MEDLINE | ID: mdl-28872317

RESUMEN

The creation of molecule-like structures in which magnetic atoms interact controllably is full of potential for the study of complex or strongly correlated systems. Here, we create spin chains in which a strongly correlated Kondo state emerges from magnetic coupling of transition-metal atoms. We build chains up to ten atoms in length by placing Fe and Mn atoms on a Cu2N surface with a scanning tunneling microscope. The atoms couple antiferromagnetically via superexchange interaction through the nitrogen atom network of the surface. The emergent Kondo resonance is spatially distributed along the chain. Its strength can be controlled by mixing atoms of different transition metal elements and manipulating their spatial distribution. We show that the Kondo screening of the full chain by the electrons of the nonmagnetic substrate depends on the interatomic entanglement of the spins in the chain, demonstrating the prerequisites to build and probe spatially extended strongly correlated nanostructures.

2.
J Phys Condens Matter ; 28(23): 23LT01, 2016 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-27158116

RESUMEN

Scanning tunnelling microscopy and density functional theory studies of manganese chains adsorbed on Cu2N/Cu (100) reveal an unsuspected electronic edge state at [Formula: see text] eV above the Fermi energy. This Tamm-like state is strongly localised to the terminal Mn atoms of the chain and fully spin polarised. However, no equivalence is found for occupied states, and the electronic structure at [Formula: see text] -1 eV is mainly spin unpolarised due to the extended p-states of the N atoms that mediate the coupling between the Mn atoms in the chain. The spin polarisation of the edge state is affected by the antiferromagnetic ordering of the chains leading to non-trivial consequences.

3.
J Phys Condens Matter ; 27(45): 455301, 2015 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-26471260

RESUMEN

Due to the quantum evolution of molecular magnetic moments, the magnetic state of nanomagnets can suffer spontaneous changes. This process can be completely quenched by environment-induced decoherence. However, we show that for typical small supported atomic objects, the substrate-induced decoherence does change the magnetic-moment evolution but does not quell it. To be specific and to compare with experiment, we analyze the spontaneous switching between two equivalent magnetization states of atomic structures formed by Fe on Cu2N/Cu (1 0 0), measured by Loth et al (2012 Science 335 196-9). Due to the substrate-induced decoherence, the Rabi oscillations proper to quantum tunneling between magnetic states are replaced by an irreversible decay of long characteristic times leading to the observed stochastic magnetization switching. We show that the corresponding switching rates are small, rapidly decreasing with system's size, with a 1/T thermal behavior and in good agreement with experiments. Quantum tunneling is recovered as the switching mechanism at extremely low temperatures below the µK range for a six-Fe-atom system and exponentially lower for larger atomic systems. The unexpected conclusion of this work is that experiments could detect the switching of these supported atomic systems because their magnetization evolution is somewhere between complete decoherence-induced stability and unobservably fast quantum-tunneling switching.

4.
J Phys Condens Matter ; 26(10): 104203, 2014 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-24552973

RESUMEN

Spin-transport calculations present certain difficulties which are sometimes overlooked when using density-functional theory (DFT) to analyze and predict the behavior of molecular-based devices. We analyze and give examples of some caveats of spintronic calculations using DFT. We first describe how the broken-symmetry problem of DFT can cause serious problems in the evaluation of the spin polarization of electron currents. Next, we signal the low-energy scale of magnetic excitations, which makes them ubiquitous at already rather small biases. The existence of excitations in spin transport has catastrophic consequences in the reliability of the usual transport calculations. Finally, we compare DFT and configuration-interaction calculations of a ferrocene-based double decker that has been heralded as a possible spin-filter, and we cast a word of caution when we show that DFT is qualitatively wrong in the description of both the ground state and the excited states of ferrocene double deckers.


Asunto(s)
Transporte de Electrón , Compuestos Ferrosos/química , Modelos Químicos , Marcadores de Spin , Simulación por Computador , Campos Electromagnéticos , Metalocenos
5.
Phys Rev Lett ; 110(8): 087201, 2013 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-23473192

RESUMEN

The controlled switching between two quasistable Néel states in adsorbed antiferromagnetic Fe chains has recently been achieved by Loth et al. [Science 335, 196 (2012)] using tunneling electrons from an STM tip. In order to rationalize their data, we evaluate the rate of tunneling electron-induced switching between the Néel states. Good agreement is found with the experiment, permitting us to identify three switching mechanisms: (i) low STM voltage direct electron-induced transitions, (ii) intermediate STM voltage switching via spin-wave-like excitation, and (iii) high STM voltage transitions mediated by domain-wall formation. Spin correlations in the antiferromagnetic chains are the switching driving force, leading to a marked chain-size dependence.

6.
Nat Mater ; 12(3): 223-7, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23263642

RESUMEN

Although noise is observed in many experiments, it is rarely used as a source of information. However, valuable information can be extracted from noisy signals. The motion of particles on a surface induced, for example, by thermal activation or by the interaction with the tip of a scanning tunnelling microscope may lead to fluctuations or switching of the tunnelling current. The analysis of these processes gives insight into dynamics on a single atomic or molecular level. Unfortunately, scanning tunnelling microscopy (STM) is not a useful tool to study dynamics in detail, as it is an intrinsically slow technique. Here, we show that this problem can be solved by providing a full real-time characterization of random telegraph noise in the current signal. The hopping rate, the noise amplitude and the relative occupation of the involved states are measured as a function of the tunnelling parameters, providing spatially resolved maps. In contrast to standard STM, our technique gives access to transiently populated states revealing an electron-driven hindered rotation between the equilibrium and two metastable positions of an individually adsorbed molecule. The new approach yields a complete characterization of copper phthalocyanine molecules on Cu(111), ranging from dynamical processes on surfaces to the underlying electronic structure on the single-molecule level.

7.
Phys Rev Lett ; 103(17): 176601, 2009 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-19905777

RESUMEN

The excitation of the spin degrees of freedom of an adsorbed atom by tunneling electrons is computed using strong coupling theory. Recent measurements [Heinrich, Science 306, 466 (2004)] reveal that electron currents in a magnetic system efficiently excite its magnetic moments. Our theory shows that the incoming electron spin strongly couples with that of the adsorbate so that memory of the initial spin state is lost, leading to large excitation efficiencies. First-principles transmissions are evaluated in quantitative agreement with the experiment.

8.
Phys Rev Lett ; 102(16): 166807, 2009 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-19518742

RESUMEN

The present theoretical study shows that a double chain of Cu metal atoms adsorbed on a Cu(111) metal surface can guide an excited electron for distances exceeding 10 nm. The nanostructure appears to be quasi-decoupled from the substrate and thus to act as a nanowire. The origin of the above phenomenon is the interference between the decay of the quasistationary 1D sp-band states localized on each chain. This allows to approach the situation of the formation of bound states in the continuum first discussed in quantum systems by von Neumann and Wigner.

9.
Nano Lett ; 8(9): 2712-7, 2008 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-18671440

RESUMEN

We present a joint experimental-theoretical study of the one-dimensional band of excited electronic states with sp character localized on Cu nanowires supported on a Cu(111) surface. Energy dispersion and lifetime of these states have been obtained, allowing the determination of the mean distance traveled by an excited electron along the nanowire before it escapes into the substrate. We show that a Cu nanowire supported on a Cu(111) surface can guide a one-dimensional electron flux over a short distance and thus can be considered as a possible component for nanoelectronics devices.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA