Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Total Environ ; 905: 167331, 2023 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-37748619

RESUMEN

Nitrate pollution and eutrophication remain pressing issues in Europe regarding the quality of aquatic ecosystems and the safety of drinking water. Achieving water quality goals under the Water Framework Directive (WFD) has proven to be particularly challenging in agricultural catchments, where high nitrate concentrations are the main reason for the failure of many water bodies to meet a good ecological status. Canals and ditches are common man-made features of irrigated and drained landscapes and, when vegetated, have recently been identified as denitrification hotspots. By combining experimental data and GIS-based upscaling estimation, the potential capacity of the canal network to reduce nitrate loads was quantified in several scenarios differing in the level of nitrate pollution and in the extent of the canal network length where conservative management practices are implemented. The analysis was carried out in the irrigated lowlands of the Po River basin, which is the largest hydrographic system in Italy and a global hotspot for nitrogen inputs and eutrophication. Scenario simulations showed that maintaining aquatic vegetation in at least 25 % of the canal network length, selecting sites with high nitrate availability (>2.4 mg N L-1), would promote a greater potential for permanent N removal. The increased denitrification capacity would meet the load reduction target required to achieve a WFD good ecological status in waters draining into the Adriatic Sea during the spring-summer months, when the eutrophication risk is higher. Promoting denitrification in the canal network by postponing the mowing of in-stream vegetation to the end of the growing season could be an effective mitigation strategy to improve water quality in agricultural basins and contribute to achieving the WFD goals.


Asunto(s)
Ecosistema , Contaminantes Químicos del Agua , Humanos , Nitratos/análisis , Objetivos , Agricultura , Calidad del Agua , Compuestos Orgánicos , Ríos , Contaminantes Químicos del Agua/análisis , Monitoreo del Ambiente
2.
PLoS One ; 18(7): e0288652, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37450464

RESUMEN

Freshwater ecosystems are experiencing unprecedented pressure globally. To address environmental challenges, systematic and comparative studies on ecosystems are needed, though mostly lacking, especially for rivers. Here, we describe the food web of the Po River (as integrated from the white literature and monitoring data), describe the three river sections using network analysis, and compare our results with the previously compiled Danube River food web. The Po River food web was taxonomically aggregated in five consecutive steps (T1-T5) and it was also analyzed using the regular equivalence (REGE) algorithm to identify structurally similar nodes in the most aggregated T5 model. In total, the two river food webs shared 30 nodes. Two network metrics (normalized degree centrality [nDC]) and normalized betweenness centrality [nBC]) were compared using Mann-Whitney tests in the two rivers. On average, the Po River nodes have larger nDC values than in the Danube, meaning that neighboring connections are better mapped. Regarding nBC, there were no significant differences between the two rivers. Finally, based on both centrality indices, Carassius auratus is the most important node in the Po River food web, whereas phytoplankton and detritus are most important in the Danube River. Using network analysis and comparative methods, it is possible to draw attention to important trophic groups and knowledge gaps, which can guide future research. These simple models for the Po River food web can pave the way for more advanced models, supporting quantitative and predictive-as well as more functional-descriptions of ecosystems.


Asunto(s)
Ecosistema , Cadena Alimentaria , Ríos , Fitoplancton , Predicción , Monitoreo del Ambiente/métodos
3.
Ecol Evol ; 12(11): e9493, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36381403

RESUMEN

Freshwater ecosystems appear more vulnerable to biodiversity loss due to several anthropogenic disturbances and freshwater fish are particularly vulnerable to these impacts. We aimed to (1) identify the contribution of land use, spatial variables, and invasion degree in determining freshwater fish alpha (i.e., species richness) and beta (i.e., local contributions to beta diversity, LCBD) diversity, evaluating also the relationship between invasion degree and nestedness ( ß nes) and turnover ( ß sim) components of beta diversity. (2) Investigate the relationship between alpha diversity and LCBD, under the hypothesis that alpha diversity and LCBD correlate negatively and (3) investigate the relationship between species contributions to beta diversity (SCBD) and species occurrence, hypothesizing that non-native species show a lower contribution to beta diversity. The linear mixed models and the partition of R 2 retained the invasion degree as the most important variables explaining alpha and beta diversity, having a positive relationship with both diversity components. Furthermore, land use related to human impacts had a positive influence on alpha diversity, whereas it showed a negative effect on LCBD. Regression model further showed that invasion degree related positively with ß sim, but negatively with ß nes, suggesting that non-native species were involved in the replacement of native species in the fish community. Alpha diversity and LCBD showed a weak positive correlation, meaning that sites with low species richness have higher LCBD. SCBD scaled positively with species occurrence highlighting that rarer species contribute less to SCBD. Finally, native and exotic species contributed similarly to beta diversity. These results suggest that invasion degree plays a central role in shaping alpha and beta diversity in stream fish, more than land use features reflecting habitat alteration or other geospatial variables. Furthermore, it is important to evaluate separately the native and the non-native components of biotic communities to identify linkages between invasion dynamics and biodiversity loss.

4.
Glob Ecol Biogeogr ; 31(7): 1399-1421, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35915625

RESUMEN

Aim: Understanding the variation in community composition and species abundances (i.e., ß-diversity) is at the heart of community ecology. A common approach to examine ß-diversity is to evaluate directional variation in community composition by measuring the decay in the similarity among pairs of communities along spatial or environmental distance. We provide the first global synthesis of taxonomic and functional distance decay along spatial and environmental distance by analysing 148 datasets comprising different types of organisms and environments. Location: Global. Time period: 1990 to present. Major taxa studied: From diatoms to mammals. Method: We measured the strength of the decay using ranked Mantel tests (Mantel r) and the rate of distance decay as the slope of an exponential fit using generalized linear models. We used null models to test whether functional similarity decays faster or slower than expected given the taxonomic decay along the spatial and environmental distance. We also unveiled the factors driving the rate of decay across the datasets, including latitude, spatial extent, realm and organismal features. Results: Taxonomic distance decay was stronger than functional distance decay along both spatial and environmental distance. Functional distance decay was random given the taxonomic distance decay. The rate of taxonomic and functional spatial distance decay was fastest in the datasets from mid-latitudes. Overall, datasets covering larger spatial extents showed a lower rate of decay along spatial distance but a higher rate of decay along environmental distance. Marine ecosystems had the slowest rate of decay along environmental distances. Main conclusions: In general, taxonomic distance decay is a useful tool for biogeographical research because it reflects dispersal-related factors in addition to species responses to climatic and environmental variables. Moreover, functional distance decay might be a cost-effective option for investigating community changes in heterogeneous environments.

5.
Sci Rep ; 12(1): 10465, 2022 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-35729231

RESUMEN

We analyzed the large-scale drivers of biological invasions using freshwater fish in a Mediterranean country as a test case, and considering the contribution of single species to the overall invasion pattern. Using Boosted Regression Tree (BRT) models, variation partitioning and Redundancy Analysis (RDA), we found that human factors (especially eutrophication) and climate (especially temperature) were significant drivers of overall invasion. Geography was also relevant in BRT and RDA analysis, both at the overall invasion and the single species level. Only variation partitioning suggested that land use was the second most significant driver group, with considerable overlap between different invasion drivers and only land use and human factors standing out for single effects. There was general accordance both between different analyses, and between invasion outcomes at the overall and the species level, as most invasive species share similar ecological traits and prefer lowland river stretches. Human-mediated eutrophication was the most relevant invasion driver, but the role of geography and climate was at least equally important in explaining freshwater fish invasions. Overall, human factors were less prominent than natural factors in driving the spread and prevalence of invasion, and the species spearheading it.


Asunto(s)
Efectos Antropogénicos , Ecosistema , Animales , Peces , Agua Dulce , Especies Introducidas
6.
J Environ Qual ; 49(1): 194-209, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33016349

RESUMEN

Understanding relationships between an increase in nitrate (NO3 - ) loading and the corresponding effects of wetland vegetation on denitrification is essential to designing, restoring, and managing wetlands and canals to maximize their effectiveness as buffers against eutrophication. Although Phragmites australis (Cav.) Trin. ex Steud. is frequently used to remediate nitrogen (N) pollution, no information is available on how NO3 - concentration may affect plant-mediated denitrification. In the present study, denitrification was measured in outdoor vegetated and unvegetated mesocosms incubated in both summer and winter. After spiking the mesocosms with NO3 - concentrations typical of agricultural drainage water (0.7-11.2 mg N L-1 ), denitrification was quantified by the simultaneous measurement of NO3 - consumption and dinitrogen gas (N2 ) production. Although denitrification rates varied with vegetation presence and season, NO3 - availability exerted a significant positive effect on the process. Vegetated sediments were more efficient than bare sediments in adapting their mitigation potential to an increase in NO3 - , by yielding a one-order-of-magnitude increase in NO3 - removal rates, under both summer (743-6007 mg N m-2 d-1 ) and winter (43-302 mg N m-2 d-1 ) conditions along the NO3 - gradient. Denitrification was the dominant sink for water NO3 - in winter and only for vegetated sediments in summer. Nitrification likely contributed to fuel denitrification in summer unvegetated sediments. Since denitrification rates followed Michaelis-Menten kinetics, P. australis-mediated depuration may be considered optimal up to 5.0 mg N L-1 . The present outcomes provide experimentally supported evidence that restoration with P. australis can work as a cost-effective means of improving water quality in agricultural watersheds.


Asunto(s)
Desnitrificación , Nitratos , Nitrógeno , Poaceae , Humedales
7.
Sci Total Environ ; 699: 134364, 2020 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-33736199

RESUMEN

Although one of the most evident effects of biological invasions is the loss of native taxonomic diversity, contrasting views exist on the consequences of biological invasions on native functional diversity. We investigated this topic using Mediterranean stream, river and canal fish communities as a test case, at 3734 sites in Italy, and distinguishing between exotic and translocated species invasion in three different faunal districts. Our results clearly confirmed that introduced species were widespread and in many cases the invasion was severe (130 communities were completely composed by introduced species). Exotic and translocated fish species had substantially different geographical distribution patterns, perhaps arising from their differences in introduction timing, spread and invasion mechanisms. We also found a clear decreasing trend of functional dispersion along an invasion gradient, confirming our hypothesis that the invasion process can diminish the relative diversity of ecofunctional traits of host fish communities. Furthermore, our results suggested that exotic species might have a greater negative effect than translocated species on the relative diversity of ecofunctional traits of fish communities. This could also be linked to the fact that translocated species are more ecofunctionally similar to native ones, compared to the exotics. Our multivariate analysis of site-specific combinations of ecofunctional traits highlighted some traits characteristic of all invaded communities, while our discriminant analysis underlined how there was a substantial ecofunctional overlap between native, exotic and translocated species groups in most areas.


Asunto(s)
Biodiversidad , Ecosistema , Animales , Peces , Especies Introducidas , Italia
8.
Sci Rep ; 9(1): 17921, 2019 11 29.
Artículo en Inglés | MEDLINE | ID: mdl-31784553

RESUMEN

Exotic species invasions often result in native biodiversity loss, i.e. a lower taxonomic diversity, but current knowledge on invasions effects underlined a potential increase of functional diversity. We thus explored the connections between functional diversity and exotic species invasions, while accounting for their environmental drivers, using a fine-resolution large dataset of Mediterranean stream fish communities. While functional diversity of native and exotic species responded similarly to most environmental constraints, we found significant differences in the effects of altitude and in the different ranking of constraints. These differences suggest that invasion dynamics could play a role in overriding some major environmental drivers. Our results also showed that a lower diversity of ecological traits in communities (about half of less disturbed communities) corresponded to a high invasion degree, and that the exotic component of communities had typically less diverse ecological traits than the native one, even when accounting for stream order and species richness. Overall, our results suggest that possible outcomes of severe exotic species invasions could include a reduced functional diversity of invaded communities, but analyzing data with finer ecological, temporal and spatial resolutions would be needed to pinpoint the causal relationship between invasions and functional diversity.


Asunto(s)
Peces/fisiología , Especies Introducidas , Animales , Agua Dulce , Modelos Estadísticos
9.
Sci Total Environ ; 624: 1325-1335, 2018 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-29929245

RESUMEN

While the significance of anthropogenic pressures in shaping species distributions and abundances is undeniable, some ambiguity still remains on their relative magnitude and interplay with natural environmental factors. In our study, we examined 91 late-invasion-stage river locations in Northern Italy using ordination methods and variance partitioning (partial-CCA), as well as an assessment of environmental thresholds (TITAN), to attempt to disentangle the effects of eutrophication and exotic species on native species. We found that exotic species, jointly with water quality (primarily eutrophication) and geomorphology, are the main drivers of the distribution of native species and that native species suffer more joint effects than exotic species. We also found that water temperature clearly separates species distributions and that some native species, like Italian bleak (Alburnus alborella) and Italian rudd (Scardinius hesperidicus), seem to be the most resilient to exotic fish species. We also analyzed the dataset for nestedness (BINMATNEST) to identify priority targets of conservation. As a result, we confirmed that altitude correlated negatively with eutrophication and nestedness of exotic species and positively with native species. Overall, our analysis was able to detect the effects of species invasions even at a late invasion stage, although reciprocal effects seemed comparable at this stage. Exotic species have pushed most native species on the edge of local extinction in several sites and displaced most of them on the rim of their natural distribution. Any potential site- and species-specific conservation action aimed at improving this situation could benefit from a carefully considered prioritization to yield the highest results-per-effort and success rate. However, we encourage future research to update the information available before singling out specific sites for conservation or outlining conservation actions.


Asunto(s)
Conservación de los Recursos Naturales , Cyprinidae/fisiología , Ecosistema , Monitoreo del Ambiente , Especies Introducidas , Altitud , Animales , Biodiversidad , Italia , Calidad del Agua
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...