Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Más filtros











Intervalo de año de publicación
1.
Physiol Behav ; 272: 114374, 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-37806511

RESUMEN

Several reports have demonstrated that depressive disorder is related to somatic symptoms including gastrointestinal or genitourinary alterations. The pathophysiological mechanisms underlying the gastrointestinal or genitourinary alterations associated with the depression are still not fully understood. Therefore, this study aimed to evaluate the motor activity of gastrointestinal (fundus of stomach and duodenum) and genitourinary tract (bladder) in a stress-based animal model of depression. Adult male mice were submitted to uncontrollable and unpredictable stress (learned helplessness model), controllable stress and non-stressful situations (control). Then, animals were euthanized and the fundus of stomach, duodenum segments or whole bladder were isolated and mounted in a standard organ bath preparation. We evaluated the contractile effects induced by KCl 80 mM for 5 min or carbachol (acetylcholine receptor agonist). The relaxant effects of isoproterenol (ß-adrenoceptor agonist) were also checked. Animals submitted to the learned helplessness model developed a helpless (depressive-like behavior) or resilient (does not exhibit depressive-like behavior) phenotype. The contractions induced by carbachol were diminished in fundus of stomach isolated from helpless and resilient animals. The isoproterenol-induced fundus of stomach relaxation was reduced in resilient but not helpless mice. The contractions/relaxation of duodenum segments isolated from helpless or resilient animals were not altered. Both helpless and resilient animals showed an increase in the bladder contractions induced by carbachol while the relaxant effects of isoproterenol were reduced when compared to control. Conversely, mice underwent a controllable stress situation did not exhibit alterations in the fundus of stomach or duodenum contraction/relaxation induced by pharmacological agents although a decrease in the bladder contraction induced by carbachol was found. In conclusion, incontrollable and unpredictable stress and not depressive phenotype (helpless animals) or controllable stress could be related to the alterations in motor activity of the fundus of stomach and bladder.


Asunto(s)
Depresión , Vejiga Urinaria , Ratones , Masculino , Animales , Carbacol/farmacología , Isoproterenol/farmacología , Estómago/fisiología , Contracción Muscular/fisiología , Duodeno
2.
Behav Brain Res ; 449: 114477, 2023 07 09.
Artículo en Inglés | MEDLINE | ID: mdl-37150444

RESUMEN

Donkey milk (DM) is a source of bioactive compounds that can benefit neural functioning. In the present study, we investigated the effects of DM consumption on anxiolytic-related, despair-like, locomotion and coordination behaviors, as well as the provision of protection from oxidative damage to lipids and proteins in brain tissues and melatonin plasma levels. To achieve this, male mice orally received DM (4 g.kg-1) or vehicle for 18 days. Their behavior was assessed in the following tests: elevated plus maze (EPM), open field and rotarod tests (OF, RR) and forced swimming test (FST). Acute treatments with diazepam (DZP, 1.5 mg.kg-1, v.o.), fluoxetine (FLX, 20 mg.kg-1, i.p.) and nortriptyline (NTP, 20 mg.kg-1, i.p.) were used as positive controls. On the eighteenth day, the animals were euthanized and brain tissue and blood were collected to measure oxidative damage, and melatonin plasma levels. Similar to DZP, repeated DM consumption reduced exploration to open areas in the EPM test. Under our experimental conditions, conventional antidepressants reduced immobility time in the FST, and the benzodiazepine treatment impaired motor coordination in mice. No significant differences in locomotion, motor coordination and despair-related behaviors were observed in the mice treated with DM when assessed in the EPM, OF, RR and FST, respectively. Biochemical assays showed that repeated DM exposition protected against oxidative damage to lipids and increased plasma levels of melatonin. These findings suggest consumption of DM may be a promising food for the treatment of anxiety-related disorders, without depressant effects on the central nervous system.


Asunto(s)
Ansiolíticos , Lesiones Encefálicas , Melatonina , Ratones , Masculino , Animales , Melatonina/farmacología , Leche , Ansiedad/tratamiento farmacológico , Ansiedad/metabolismo , Ansiolíticos/farmacología , Encéfalo , Estrés Oxidativo , Natación , Lípidos , Conducta Animal , Depresión/metabolismo
3.
Eur J Pharmacol ; 945: 175603, 2023 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-36804548

RESUMEN

The motor activity of the epididymis duct is an essential process for male fertility and it is regulated by hormonal, neuronal and epithelial mechanisms. However, although there is evidence for the presence of histamine in the epididymis, its effects on epididymal motor activity are unknown. This study sought to evaluate the contractile effects of histamine on the rat distal cauda epididymis duct. Segments of the distal cauda epididymis duct from male Wistar rats were isolated and used in isolated organ bath experiments to evaluate the contractile effects of histamine in the absence or presence of antagonists of histamine receptors, α1-adrenoceptors and muscarinic acetylcholine receptors. The effects of histamine on noradrenaline induced contractions were also investigated. Histamine was able to induce phasic contractions on rat distal cauda epididymis duct which were prevented by promethazine 10-1000 nM (H1 receptor antagonist), ranitidine 1-100 µM (H2 receptor antagonist), atropine 100 nM (muscarinic antagonist), and prazosin 100 nM (α1-adrenoceptor antagonist). In addition, histamine was also able to modify noradrenaline-induced contractions possibly via activation of H1 and H2 receptors. In conclusion, this study demonstrates that histamine can induce phasic contractions of rat distal cauda epididymis via H2 receptors and autonomic neurotransmitters. Histamine may also exert modulatory actions on contractions of rat distal cauda epididymis duct induced by adrenergic receptor agonists. Further studies are necessary to unveil the localization of histamine receptors within the epididymal duct and the consequences of manipulation of the histaminergic system on epididymal function and male fertility.


Asunto(s)
Epidídimo , Histamina , Ratas , Masculino , Animales , Ratas Wistar , Histamina/farmacología , Prazosina/farmacología , Norepinefrina/farmacología , Receptores Adrenérgicos alfa 1
4.
Dev Neurosci ; 44(6): 603-614, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36162387

RESUMEN

Maternal stress during pregnancy results in increased risk of developing psychiatric disorders in the offspring including anxiety, depression, schizophrenia, and autism. However, the mechanisms underlying this disease susceptibility remain largely to be determined. In this study, the involvement of the serotonin (5-HT) and kynurenine (KYN) pathways of tryptophan metabolism on the behavioral deficits induced by maternal stress during the late phase of gestation in mice was investigated. Adult offspring born to control or restraint-stressed dams were exposed to the elevated plus-maze and tail suspension tests. Metabolites of the KYN and 5-HT pathways were measured in the hippocampus and brainstem by ultra-performance liquid chromatography tandem mass spectrometry. Female, but not male, prenatally stressed (PNS) offspring displayed a depressive-like phenotype, mainly when in proestrus/diestrus, along with reduced hippocampal 5-HT levels and high 5-HT turnover rate in the hippocampus and brainstem. In contrast, male PNS mice showed enhanced anxiety-like behaviors and higher hippocampal and brainstem quinolinic acid levels compared to male offspring born to nonstressed dams. These results indicate that maternal stress affects the behavior and brain metabolism of tryptophan in the offspring in a sex-dependent manner and suggest that alterations in both the 5-HT and KYN pathways may underlie the emotional dysfunctions observed in individuals exposed to stress during in utero development.


Asunto(s)
Quinurenina , Triptófano , Embarazo , Ratones , Animales , Femenino , Quinurenina/metabolismo , Triptófano/metabolismo , Serotonina/metabolismo , Ansiedad/metabolismo , Conducta Animal
5.
Int J Tryptophan Res ; 15: 11786469221111116, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35846874

RESUMEN

In addition to be a primary risk factor for type 2 diabetes and cardiovascular disease, obesity is associated with learning disabilities. Here we examined whether a dysregulation of the kynurenine pathway (KP) of tryptophan (Trp) metabolism might underlie the learning deficits exhibited by obese individuals. The KP is initiated by the enzymatic conversion of Trp into kynurenine (KYN) by indoleamine 2,3-dioxygenase (IDO). KYN is further converted to several signaling molecules including quinolinic acid (QA) which has a negative impact on learning. Wistar rats were fed either standard chow or made obese by exposure to a free choice high-fat high-sugar (fcHFHS) diet. Their learning capacities were evaluated using a combination of the novel object recognition and the novel object location tasks, and the concentrations of Trp and KYN-derived metabolites in several brain regions determined by ultra-performance liquid chromatography-tandem mass spectrometry. Male, but not female, obese rats exhibited reduced learning capacity characterized by impaired encoding along with increased hippocampal concentrations of QA, Xanthurenic acid (XA), Nicotinamide (Nam), and oxidized Nicotinamide Adenine Dinucleotide (NAD+). In contrast, no differences were detected in the serum levels of Trp or KP metabolites. Moreover, obesity enhanced the expression in the hippocampus and frontal cortex of kynurenine monooxygenase (KMO), an enzyme involved in the production of QA from kynurenine. QA stimulates the glutamatergic system and its increased production leads to cognitive impairment. These results suggest that the deleterious effects of obesity on cognition are sex dependent and that altered KP metabolism might contribute to obesity-associated learning disabilities.

6.
Biomed Pharmacother ; 145: 112478, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34872801

RESUMEN

Mansoa hirsuta is a medicinal plant native to the Brazilian semi-arid region. This approach aimed to investigate the in vitro and in vivo toxicity and anti-inflammatory and analgesic actions of the M. hirsuta fraction (MHF). In vitro cell viability was assessed in 3T3 cells. In vivo, the acute toxicity test, a single dose of the MHF was administered. For the subchronic toxicity test, three doses of were administered for 30 days. Locomotion and motor coordination were assessed using open field and rota-rod. The anti-inflammatory activity was evaluated in carrageenan-induced paw edema and zymosan-induced air-pouch models. Myeloperoxidase (MPO) and total proteins were also measured. The antinociceptive activity MHF was determined using acid acetic-induced abdominal writhing and formalin models. In the cytotoxicity assay, MHF showed no significative impairment of cell viability and in the acute toxicity study, did not cause mortality or signs of toxicity. Repeated exposure to MHF did not cause relevant toxicological changes. The evaluation in the open field test showed that the MHF did not alter the locomotor activity and there was no change in motor coordination and balance of animals. MHF significantly reduced edema, MPO production, the migration of leukocytes and protein leakage. In addition, MHF reduced abdominal writhing and significantly inhibited the first and second stage of the formalin test. The results of this study indicated that MHF has an anti-inflammatory and analgesic potential without causing acute or subchronic toxic effects and it can be a promising natural source to be explored.


Asunto(s)
Conducta Animal/efectos de los fármacos , Bignoniaceae/química , Triterpenos Pentacíclicos/farmacología , Distribución Tisular , Analgésicos/farmacología , Animales , Antiinflamatorios/farmacología , Brasil , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Modelos Animales de Enfermedad , Ratones , Extractos Vegetales/farmacología , Hojas de la Planta , Plantas Medicinales , Pruebas de Toxicidad/métodos , Pruebas de Toxicidad/estadística & datos numéricos
7.
Basic Clin Pharmacol Toxicol ; 129(3): 183-195, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34196104

RESUMEN

The effects of dipyrone and acetylsalicylic acid (ASA) on male fertility are still not fully understood, mainly considering the epididymis as a putative target for their anti-fertility effects. Therefore, this study aimed to investigate the effects of dipyrone and ASA on the contractions of distal cauda epididymis duct, serum testosterone levels and sperm parameters in rats. Firstly, we checked the in vitro effects of dipyrone and ASA (10-1000 µM) on the contractions of distal cauda epididymis duct by pharmacological experiments. We also evaluated the effects of in vivo treatment with dipyrone and ASA 100 mg/kg (p.o.) for 15 days on epididymal duct contractions, serum testosterone levels and sperm parameters. In vitro dipyrone or ASA decreased the epididymal duct contractions induced by phenylephrine or carbachol. We observed that in vivo treatment with both drugs decreased the daily sperm production, serum testosterone levels and sperm count through epididymis without altering the epididymal duct contractions and sperm transit time through epididymis. In conclusion, in vitro dipyrone and ASA were able to diminish the contractions of epididymal duct, whilst in vivo administration decreased the sperm count throughout epididymis as a consequence of a low sperm production caused by reduced testosterone levels.


Asunto(s)
Epidídimo/efectos de los fármacos , Espermatozoides/efectos de los fármacos , Animales , Aspirina , Dipirona , Epidídimo/fisiología , Genitales/efectos de los fármacos , Masculino , Ratas , Ratas Wistar , Recuento de Espermatozoides , Testosterona/sangre , Testosterona/metabolismo
8.
Biomed Rep ; 15(1): 61, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34094537

RESUMEN

Pain and inflammation are symptoms of various diseases, and they can be modulated by different pathways, thus highlighting the importance of investigating the therapeutic effects of novel compounds. Previous studies have shown that isatin-thiosemicarbazone exhibits antitumor, antifungal antibacterial and other biological properties. Based on the wide range of biological effects of these compounds, the aim of the present study was to investigate the central nervous system (CNS) performance, and the anti-nociceptive and anti-inflammatory activity of (Z)-2-(5-nitro-2-oxoindolin-3-ilidene)-N-hydroazinecarbothioamide (PA-Int5) in treated mice. Three doses of PA-Int5 were tested orally (1.0, 2.5 and 5.0 mg/kg) in the nociceptive and inflammatory animal models. Additionally, the potential sedative effects of PA-Int5 (5 mg/kg, oral gavage) were investigated using an open field and rotarod tests, to exclude any possible unspecific effects of the nociceptive assays. Anti-nociceptive activity was assessed using the acetic acid-induced abdominal contortion and formalin tests, whereas anti-inflammatory activity was assessed using a carrageenan-induced paw edema and zymosan-induced air-pouch models. PA-Int5 (5 mg/kg) induced anti-nociceptive activity in the abdominal contortion model. In the formalin test, PA-Int5 (at 2.5 and 5 mg/kg) reduced nociception in the second phase. At the higher dose tested, PA-Int5 did not affect spontaneous locomotion or motor coordination. The data revealed that at all doses tested, the compound significantly reduced paw edema following carrageenan administration. In the zymosan-induced air-pouch model, PA-Int5 potently inhibited leukocyte migration and protein levels at the site of inflammation. When combined, the results revealed, for the first time, that PA-Int5 exhibited anti-nociceptive and anti-inflammatory activities, and highlights its potential, as well that of other derivatives, as novel candidates for pain relief.

9.
Alcohol ; 90: 1-9, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33031882

RESUMEN

Anxiety and depression are symptoms associated with ethanol withdrawal that lead individuals to relapse. In the kynurenine pathway, the enzyme indoleamine 2,3 dioxygenase (IDO) is responsible for the conversion of tryptophan to kynurenine, and dysregulation of this pathway has been associated with psychiatric disorders, such as anxiety and depression. The present study evaluated the early and late behavioral and biochemical effects of ethanol withdrawal in rats. Male Wistar rats were submitted to increasing concentrations of ethanol in drinking water during 21 days. In experiment 1, both control and withdrawal groups were submitted to a battery of behavioral tests 3, 5, 10, 19, and 21 days following ethanol removal. In experiment 2, animals were euthanized 3 days (short-term) or 21 days (long-term) after withdrawal, and the brains were dissected altogether, following kynurenine concentration analysis in prefrontal cortex, hippocampus, and striatum. Short-term ethanol withdrawal decreased the exploration of the open arms in the elevated plus-maze. In the forced swimming test, long-term ethanol-withdrawn rats displayed higher immobility time than control animals. Ethanol withdrawal altered neither locomotion nor motor coordination of rats. In experiment 2, kynurenine concentrations were increased in the prefrontal cortex after a long-term period of withdrawal. In conclusion, short-term ethanol withdrawal produced anxiety-like behaviors, while long-term withdrawal favored depressive-like behaviors. Long-term ethanol withdrawal elevated kynurenine levels, specifically in the prefrontal cortex, suggesting that the depressive-like responses observed after long-term withdrawal might be related to the increased IDO activity.


Asunto(s)
Encéfalo/enzimología , Etanol , Indolamina-Pirrol 2,3,-Dioxigenasa , Síndrome de Abstinencia a Sustancias , Animales , Ansiedad , Depresión , Indolamina-Pirrol 2,3,-Dioxigenasa/metabolismo , Quinurenina/análisis , Masculino , Ratas , Ratas Wistar
10.
Pharmaceutics ; 12(4)2020 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-32326277

RESUMEN

A variety of neuroactive flavonoids can be found in the species of the Passiflora genus; however, their difficulty in crossing the blood-brain barrier limits their in vivo neuropharmacological activity. In this study, cationic nanoparticles were developed as a novel nanocarrier for improving the antidepressant activity of Passiflora edulis f. flavicarpa leaf extract. Formulations obtained using Eudragit E PO polymethylmethacrylate copolymer, as polymeric matrix had their physicochemical properties investigated. The analytical content of the flavonoids vicenin-2, orientin, isoorientin, vitexin, and isovitexin was determined in the plant extract. Small-sized and spherical nanoparticles loaded with Passiflora edulis f. flavicarpa were obtained with positive zeta potential and high encapsulation efficiency. In addition, the nanosystems were shown to be stable for at least 6 months. The antidepressant activity of P. edulis extract (50 and 100 mg/kg) as well as the extract-loaded nanoparticles (5 mg/kg) were investigated in mice using the forced swimming test, where the latter increased the potency of the former by 10-fold. In addition, histopathological and biochemical analysis confirmed the biocompatibility of the extract-loaded nanoparticles. This study demonstrated that the Eudragit cationic nanoparticles were able to improve the antidepressant activity of P. edulis in the central nervous system of mice.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA